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Slowly driven dissipative systems may evolve to a critical state where long periods of apparent equilibrium
are punctuated by intermittent avalanches of activity. We present a self-organized critical model of punctuated
equilibrium behavior in the context of biological evolution, and solve it in the limit that the number of
independent traits for each species diverges. We derive an exact equation of motion for the avalanche dynamics
from the microscopic rules. In the continuum limit, avalanches propagate via a diffusion equation with a
nonlocal, history dependent potential representing memory. This nonlocal potential gives rise to a non-
Gaussiar(fat) tail for the subdiffusive spreading of activity. The probability for the activity to spread beyond
a distancer in time s decays as/(24/m)s™ ¥ %exd —3/4x*"®] for x=r*/s>1. The potential represents a
hierarchy of time scales that is dynamically generated by the ultrametric structure of avalanches, which can be
quantified in terms of “backward” avalanches. In addition, a number of other correlation functions character-
izing the punctuated equilibrium dynamics are determined exd&1063-651X%96)05108-2

PACS numbegs): 05.40:+j, 05.70—a, 87.10+e

[. INTRODUCTION termittent dynamics of single species, where morphological
change is concentrated in short intervals in time interrupting
Many natural phenomena evolve intermittently rather tharlong periods of stasis. These punctuations may be correlated
following a uniform, gradual path. In particular, the dynam-to large extinction events in the global ecology, which may
ics of systems out of equilibrium may follow a steplike pat- themselves be distributed according to a power law analo-
tern with long, dormant plateaus interrupted by suddergous to the Gutenburg-Richter law for earthqualk&$].
bursts, or avalanches, where the accumulated stress is re- This view was promoted by Bak and Snepgd®j who
leased. Avalanche dynamics violates the picture of graduakntroduced a simple self-organized criticd®0Q model for
ism where large systems evolve continuously, for instancegoevolutionary avalanches of different species in an ecology.
to a local energy minimum. The bursts which separate subfhe model explicitly treats macroevolution as a many-body
sequent metastable states may eventually span all scales sfatistical problem where the fitness landscape in which each
to the system siz§l] thus providing a general mechanism species evolves is affected by changes in other species in the
for long-range spatiotemporal correlations. The appearancecology. The mutation of the “least fit” species in the sys-
of fractals, 1f noise, Levy flights, etc., have been unified by tem completely changes the fitness landscape of some other
relating these phenomena, in a broad class of nonequilibriurapecies and coevolution with punctuated equilibrium behav-
models, to an underlying avalanche structiZg ior is obtained. This occurs without fine tuning parameters
Even though the theory of uniformitarianism, or gradual-and without the need for external shocks leading to cata-
ism, has historically dominated both geology and paleontolelysms of mass extinction. The extinction ever(&va-
ogy, prototypical examples of avalanche dynamics lie inlancheg have a power law distribution of sizes, where most
these two domains3]. For instance, the distribution of earth- extinction is concentrated in the largest events. This fact pro-
guake magnitudes follows a power law found by Gutenbergides some theoretical underpinning for catastrophism rather
and Richtef4]. The scale-free variation from small events to than uniformitarianism as the defining characterization of
large events indicates a common dynamical origin and everevolutionary history{10]. The model may capture some ro-
tually led to the suggestion that earthquakes are an examplaust features of real evolution, such as punctuated equilib-
of self-organized criticality5]. Most of the time, the crust of rium and catastrophism, in spite of its drastic simplifications.
the earth appears stable. These periods of apparent equilib- In fact, Ito[11] has related the spatiotemporal pattern of
rium are punctuated by earthquakes, which take place on @arthquakes in California to the avalanche pattern found in
fractal fault structurd6] that stores information about the the Bak-Sneppen evolution model. The data for the pattern
history of the system. of successive earthquakes over time may be fractal in space
Actually, over twenty years ago, Gould and Eldredge pro-and time, so that each earthquake can be viewed as a single
posed that biological evolution also takes place in terms ofvent within a much larger avalanche structure consisting of
punctuations, where many species become extinct and nemany earthquakes. If this picture is correct, earthquakes can
species emerge, interrupting periods of low actiJif}. In  be described as a “fractal renewal proced?;12| with a
this context, punctuated equilibrium usually refers to the in-power law distribution of times between subsequent earth-
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guakes in a given region. The analogy can be made by re- zsm
placing the least fit species with the weakest link in the
earth’s crust. Ito’s observations of return times for earth-
guakes in California are consistent with general scaling rela- 2%
tions valid for the Bak-Sneppen model, as well as other ex-
tremal SOC models[2] for invasion percolation[13],
interface depinning14], and flux creeg15].

Although the Bak-Sneppen model is an extremely simpleg
model of SOC and a few exact results as well as many scal- ;g |
ing relations are known for if2], it has not(yet) been
solved. A variety of similar evolution models have been sub-
sequently introduced to incorporate more aspects of reality soo |-
such as speciation and external shogkS]. These models
have been primarily studied numerically.

15000 -

ms

Recently, we have proposed a multitrait evolution model o : 0005000 : 20000000
with M independent, internal degrees of freedom for each ¢
specieg[17]. This model is solvable in the limiM —o; it FIG. 1. Punctuated equilibrium behavior for the evolution of a

includes the Bak-Sneppen model whedn=1. We have pre-  gjngle species in the one-dimensiondl=c model. The vertical
viously reported some of the simplest resyilt3]. Here we  axis is the total number of returns of the activity to some site as a
present a more extensive analysis of the model. Note that th@inction of times. Note the presence of plateaigeriods of stasjs
M — o limit is not mean-field theory18] because it contains of all sizes. The distribution of plateau sizes scales a4
spatial correlations and punctuated equilibrium dynamics. In
addition, we find rigorous results that might be too delicatecritical state. The anomalous diffusion arises from a long-
to detect with numerical calculations alone, such as the norterm memory effect due to the ultrametric tree strucf@
Gaussian tail for the distribution of activity. of avalanches. This tree structure of activity is quantified by
The multitrait evolution model incorporates the notion calculating the ultrametric distances between subsequent ex-
that the survivability of each species depends on a number afemal (minimal) sites. The probability distribution for this
independent traits associated with the different tasks that iistance is a power law at large times and asymptotically
has to perform in order to survijd9]. Evolution proceeds approaches the probability distribution of all backward ava-
via an extremal dynamics where the species in the globdhnches. This latter quantity, which we will define in the text,
ecology with the lowest barrier to mutation, or the least fit,is calculated exactly in Eq5.3). A number of other distri-
mutates. This event affects certain barriers to mutation obution functions are also determined. The critical exponents
fitnesses of other species in the system which are relateste D=4, 7=3/2, =3, y=1, v=0=1/2, 2"=2,
through, for instance, a food chain. As a consequence of thega!! —3/2  and TrirsT=2—d/4. The nonlocal time depen-
interaction between species, even species that possess Welknce of the dynamical equations and the ultrametric struc-

adapted abilities, with high barriers, can be undermined iRyre of avalanches suggest a possible relation between glassy
their existence by weak species with which they interactgynamics and self-organized criticalifgd].

This may lead to a chain reaction of coevolution. The pattern " |n Sec. I, we introduce our model and show that it self-

of change of individual species exhibits punctuated equilibprganizes to the critical state. It is demonstrated that ava-
rium behavior which comes from episodes of mass extinCtanches in the critical state have an ultrametric tree structure.
tion events sweeping through the species. Punctuated eqyj Sec. 111, we derive the equation of motion for the critical
librium is described by a Devil’'s staircase, as shown in Fig.state for theM — o model and present our main analytical
1. The introduction of many internal traits for each species isesults for the anomalous diffusion. In Sec. IV, we show that
consistent with paleontological observations indicating thathe critical behavior is characterized by simple power laws
evolution within a species is “directed/’19]; morphological  wjth specific exponents that verify general scaling relations
change over time is concentrated in a few traits, while mosfor nonequilibrium phenomena. In Sec. V we calculate the
others traits of the species are static. distributions for “backward avalanches.” Due to irrevers-
Our main analytical results are as follows: Rdr—~x, we jpjjity these differ from the usual “forward” avalanche dis-
derive an exact equation of motion, given in E8.7), forthe  triputions. The backward avalanches can be related to the
macroscopic observables in the SOC state from the microgjtrametric distances between subsequent activity. Most de-

scopic dynamics. From this equation, which is our centrakails of our calculations have been deferred to the Appendi-
result, one can extract separate equations for the temporggs.

and spatial distribution of avalanche sizes, both of which are

determined exactly in Eq$2.2), (2.3 and were previously Il. THE MULTITRAIT EVOLUTION MODEL
derived by us in Ref[17]. In the continuum limit, the sub-
diffusive dynamics is given by a “Schdinger’ equation Our model is defined as follows: A species is represented

with a nonlocal potential in time Eq3.8). This potential by a single site on d-dimensional lattice. The collection of
represents memory. The exact asymptotic solution(B§)  traits for each species is represented by a séfl afumbers

of the Schrdinger equation at large length and time scalesn the unit interval. A larger number represents a better abil-
has a non-Gaussian tail. This solution describes the nority to perform that particular task, while smaller numbers
trivial spatiotemporal pattern of activity in the self-organized pose less of a barrier against mutation. Therefore, we “mu-
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FIG. 2. Snapshot of the stationary state in a finite one-
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numbers selected up to timg given an initial state at
s=0 where all the random numbers are uniformly distrib-
uted in the unit interval. Therefor&s(s=0)=0(1/MLY).
As evolution proceeds, the gap(s) increases monotoni-
cally in a stepwise fashion with intermediate plateaus that
become longer and longer. These plateaus occur when sub-
sequent minimal random numbers in the system are smaller
than a minimum at some previous time. One can assign to
each plateau an avalanche which starts and ends with con-
secutive changes i6(s), and which consists of all the ran-
dom numbers in the gap belo@(s). As the gap increases,
the probability for the new random numbers to fall below the
current gap increases also, and longer and longer avalanches
typically occur.

Following Ref.[2] again, it can be shown from the law of
large numbers that in the limit of large system siteghe
growth of the gap versus timeobeys the gap equation

dG(s) 1-G(s)
ds  MLYS)gs

(2.1

dimensional system for thd = 1 (Bak-Sneppenmodel. Except for . .
the avalanche which consists of small fitness values in a localize@S the gap increases, so does the average avalanche size

region, almost all the fitness values in the system are above a selfS)c(s)» Which eventually diverges a§(s)—Gc. In the
organized thresholal; . limit L—oo, the density of sites with random numbers less

thanG, vanishes, and the distribution of random numbers is

tate” at every time step the smallest number in the entireiniform aboveG,. The gap equatiofi2.1) contains the es-
system by replacing it by a negossibly smaller number sential physics of SOC phenomena. When the average ava-
that is randomly drawn from a flat distribution in the unit 1anche size divergegsS)g)— =, the system becomes criti-
interval P. Choosing the smallest random number mimicscal- At the same timelG/ds approaches zero, which means
the Darwinian principle that the least fit species mutf2®}  that the system becomes stationary. For any fiMtethe
The dynamical impact of this event on neighboring speprocess of self-organization is the same as for Mhe 1
cies is simulated by also replacing one of Menumbers on model, and all of the results derived for that case apply.
each neighboring site with a new random number drawrSinceM just enters as a rescaling of the system &ize Eq.
from P. Which one of thevl numbers is selected for such an (2.1), it is plausible that the critical behavior for any finite
update is determined at random, since we assume that a mi} is in the same universality class as fdr=1. We have
tation in the traits of one species can lead to an adaptivéhown[17] that the limitM — is a different universality
change in any one of the traits of a dependent species. THdass.
interaction between the fitnesses of species leads to a chain

reaction of coevolution. B. Ultrametricity of avalanches

It is useful to consider the case where, at a certain time,
the smallest random number in the system has the valde

The sequence of selective random updates at extremal avalanche by definition consists of all subsequent random
(minimal) sites with nearest-neighbor interactions drives thehumbers which are below. The\ avalanche that started at
system from any initial state to a self-organized critical states ends at the first instarg+s’ when the smallest random
in which species exist in a state of punctuated equilibriumnumber in the system is larger than All of the random
with bursts of evolutionary activity that are correlated overnumbers that are below the threshold valueat any one
all spatial and temporal extents. In this state almost all speinstant in time are called “active” because they make up the
cies have reached fitnesses above a SOC threshold, enjoyikgavalanche.
long periods of quiescence, interrupted by intermittent activ- We now consider the sequence of minimal values
ity when changes in neighboring species force a readjustxmin(S) comprising anyh avalanche. Each valug,(S)
ment in their own barriers. A snapshot of the stationary statdas a parent barrier valug,i,(s—s’) preceding it within the
in a finite one-dimensional system is shown in Fig. 2. N\ avalanche. This parent is the barrier that introduced the

The self-organization process for the finité model is  particular random number into the system that became the
similar to that for the Bak-Sneppen modelE&1). It is  minimum at times. Obviously, the parent of the i (S)
described by a “gap” equation that relates the rate of ap«value also has its own parent. One can therefore place all of
proach towards the stationary attractor to the average avdhe barrier values within a given avalanche onto a tree, as
lanche size. This equation demonstrates that the stationashown in Fig. 3. The distance on the tree between any two
state of the system is a critical state for the avalanches, whegetive barrier values at a given time is determined by the
the average avalanche size diverges. Following Rdfwe  most recent common ancestor of the two values. This dis-
define the gaji5(s) to be the largest of the minimal random tance is ultrametri¢20]. In Sec. V we relate the probability

A. Self-organization
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FIG. 3. Ultrametric tree structure. At any given time, indicated
by the vertical axis, all of the active sites below threshold have an 10-°
ancestry which forms a tree. The ultrametric distance between any
pair is the distance back in time to the first common ancestor.
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distribution of the ultrametric distances between subsequent 0
minimal random numbers to the distribution of all backward
avalanches, which is determined exactly.

FIG. 4. Numerical verification of Eq(2.4). We sampled the
C. The limit M — o probability for an avalanche to start at the origin and to be con-
o ) . o tained by the smallest possible box of radiugor r<250 with

For finite M, active barriers can be eliminated both by jncrements of\r =10. Squares represent the measured values from
becomln'g the global minimum at some time, or by beinga sample of % 1¢° avalanches for this probability, corresponding
chosen in the nearest-neighbor interaction when the globa —,f(0r)~35.48 . ..r 3 which is drawn as a solid line.
minimum occurs on a neighboring site. The caée>~ of
the model is special because the existing active barriers th@or \=),=1/2, P, (s)~s 7 for large sizes withr=3/2.
any species possesses can only be changed if these barrigi )\ <) | the critical avalanches are subdivided into
themselves become the global minimum, despite the nearesty )jer avalanches and the distribution acquires a cutoff. The
neighbor interaction in the model. Since there are infinitely.iitical behavior is quite different than thel=1 model
many barrieron each siteno existing active barrier is ever where the numerical result is=1.1 in one dimensiofi2].

I|kgly to be chosen for an updgte n a.nearest-nelghbor INeFrhe model forM = clearly represents a different univer-
action. The nearest-neighbor interaction can only create NeW, i, ¢jass than the original Bak-Sneppen model. Actually,
aCt'Vﬁ bgrrlersh_'l;]hls fagt all(?wsd us to lformulate a cascadgne temporal behavior in this case is identical to the temporal
mechanism which can be solved exactly. behavior of the random-neighbor evolution mofEs].

In what follows we shall consider the stationary state be- ;e the random-neighbor model, though, th— o
havior in _the limit of |nf|_n|te system size, and confine OUr model also exhibits spatial correlations, leading to punctu-
presentation to thd=1 dimensional case of our model with ated equilibrium behavior. In Ref17] we found that the
M_m.' We point out Iater.wh|ch. cr|_t|cal exponents are di- robability f, of a A\, avalanche to ever affect a particular
mension dependent gnd dimension md_epend(_ant, ar_1d we W&te of distance from its origin is exactly given by
discuss in more detail the results for higher dimensional lat-
tices elsewherd23]. To simplify the algebra further, we 12
make a slight modification of the model without restricting fr=m, (2.3
the generality of the results: At each time step during the
avalanche, the smallest active barrier is set to unity instead gfnplying that the probability for an avalanche to reach pre-
being replaced by a new random number. Then, there is efisely to a site of distancefalls asymptotically as ~"r with
ther no new active barrier created with probability . —3 Noting that one particular site can not fully contain
(1=))% or one such barrier is created to the |eft or to thethe spread of an avalanche, we have obtained an equation for
right of the minimum with probability\(1—\) in either  the propabilityf (0yr) of a\. avalanche to start at the origin
case, or two active barriers are created to the left and thg,q o ever leave a box of radiusaround its origin. The
. . . . oy 2 -
right of the minimum with probabilith“. leading asymptotic behavior of the solution for confined ava-

The spatial and temporal correlations in our model can bg;ches is given by
separated into two independent equations of motion for the
width and duration of avalanches. For instance, the distribu- 1
tion of avalanches sizesis given by(see Appendix A f(Or)~ 3

r(HrdH]?

r'(%)
confirming thatrg=3. The calculation leading to E(R.4) is
I(s+ 1) given in Appendix B. A comparison of numerical results for
2

§)=— . 2.2 f(0r) with the asymptotic behavior, given in Fig. 4, show
I'(HI(s+2) perfect agreement.

(r—o0), (2.9

r

P, (S)=43\5"Y(1—\)S"1A(s)
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20 : , , , Py\(r,s)=P,(r=o,s)—F,(r,s), 3.0

151 y 1 whereP, (r=,s)=P,(s), as given in Eq(2.2). Since we
consider the avalanche to start with a single active barrier at

or 4 ] r=0 and s=0, it is P,(r=05s)=0 for all s=0, and

P, (r,s=0)=0 for all r because the avalanche has not died

] ‘ at s=0. The remaining properties of )a avalanche can be

C o ‘f 41 ; | deduced from the properties of avalanches that ensue after
% . . { [ # the first update. It will terminate with probability (1\)?

5| Sk 7 : o after the first update when the update does not produce any

K, : new active barriers. Thus it i®,(r,s=1)=(1—\)?. For

mor s 1 avalanches surviving untd=2 we find forr=1

er 11:? | Py(r,8)=A(1—N)[Py(r—15—1)+Py(r+1s—1)]

-20

1 L L L
0 200 400 600 800 1000 s—1

A2 Py(r—18)P,(r+1s—1-s) (32
/:0
FIG. 5. Plot of a typical . avalanche foM =, starting at the °

origin at times=0, and ending at time=976. At each time step, in the following way: The first update may create exactly one
every site with at least one active barrier is marked and the  new active barrier with probabilitix (1—\) either to the left
sequence of minimal sites is connected with a line showing jumpsr to the right of the origin(i.e., one step towards or away
of various sizes. Apparent also are the punctuated equilibria fofrom the chosen site of distancg. In this case, the proper-
each site which extend over many sizes. The propagators) of  tjes of the original avalanche of duratisrare related to the
the activity is the probability to have a minimum at sitet time properties of an avalanche of duratiss 1 with regard to a
s, while F(r,s) is the probability for an avalanche to endsahere: site of distance —1 orr+1, respectively. Finally, the first
=976) and to have reached a particular sit any time during its ,,yate may create two new active barriers with probability
evolution. A2 to the left and the right of the origin. Then, the properties
of the original avalanche of duratios are related to the
IIl. THE CASCADE EQUATION AND MAIN RESULTS properties of all combinations of two avalanches of com-

Ultimately, spatial and temporal correlations are interre-Pineéd durations—1. Both of these avalanches evolve in a
lated through the microscopic rules for the propagation oftatistically independentnanner forM=c. Since only one
activity in space and time. Ideally, one would like to deter-Of these avalanches can be updated at each time step, their
mine the propagatd(r,s) which is the probability that the compmed duration has to add uqul for this process to
minimum barrier value will be located at positionat time ~ Contribute to the avalanche of duratisnFor any such com-

s given that it was at location 0 at time O for the infinite Dination, the probability to not affect the chosen site of dis-
\. avalanche. We have not been able to analytically calcutancer from the origin is given simply by the product of the
late this quantity directly. We have instead focused on gProbabilities for the two ensuing avalanches to not affect a
different quantity. LetF,(r,s) be the probability for ax  chosen site of distanae-1 orr+1, respectively.

avalanche to survive precisedysteps and to have affected a _ Before proceeding with the solution of E(.2), we re-
particular site of distance from its origin. Conceptually, the V€W SOmMe Ilm!tmg cases to obtain previously derived results
quantity F, (r,s) may roughly correspond to an envelope [17]. Considering the limit =, for s=2, Eq.(3.2) reduces

function of the propagato(r,s). This relation betweelr

andG is explained in Fig. 5. Due to the lack of any scale in s—1
the model, it is plausible that the asymptotic behavioGof  p, (s)=2\(1—\)P,(s—1)+A\2 >, P,(s')P,(s—1—5').
andF is identical, as comparison with numerical calculations s'=0
suggests. (3.3

The direct analysis of this envelope function proves to be_ . . . I .
rewarding in many respects. We find a cascade equatio his is the cascade equgtlorj for the lifetime dlstrlbutlon of
which can be reduced to separate equations for spatial ar?d/alanches. yvhose_ solution is E@.2) (see _ApPe”d"_‘ A
temporal correlations. In the continuum limit, the avalanche'\le"_Jlr the critical p0|r_1tA)\=)\c—)\—>0+ » the lifetime distri-
dynamics is given in terms of a Scliiager equation with a °ution obeys a scaling form
nonlocal potential in time. We solve this equation to find the . e s L
leading asymptotic behavior df, (r,s). This calculation P\(8)~s""G(sAN?) (7= 32,0=3). 3.4
yields a non-Gaussian tail in the distribution with an ava-
lanche dimensioD =4, signaling subdiffusive behavior for
the spread of activity.

First, we consideP,(r,s), the probability that tha ava-
Ianc.he dieg precisely after updqte_s and doesot affect a N, (1) =(1= )24 N (1= N[Ny (r— 1)+ Ny (r+1)]
particular siter away from the origin of the avalanche. The
guantitiesP, (r,s) andF,(r,s) are simply related +X2N, (r—1)N\(r+1). (3.5

Similarly, we can rederive Ed2.3) for the spatial corre-
lations. Defining N,(r)=24P,(r,s), Eqg. (3.2 yields
N,(0)=0, and forr=1
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N,(r) is the probability for an avalanche of any temporal It is immediately clear from the form of the solution that the

extent not to reach a particular point of distamcbefore it
dies. Equation (3.5 for A=A.=1/2 is solved by
Ny (r)=1-f, with f, given in Eqg.(2.3. Close to the criti-
cal point this quantity also obeys a scaling form

1
1-N,(r)~ r—H(rA)\")

TR—1 (TR:31V: %) (36)

The equation governing the envelope functkey(r,s) is
obtained by inserting Eq.(3.1) into Eg. (3.2. It is
F\(0,5)=P,(s), F\(r,00=0, F,(r=1s=1)=0, and for
s=1,r=1,

Fo(r,s+1)=A(1-MN)[F\(r—=15)+F,(r+15s)]

S
+A2D Py (s—S)[F\(r—1s')
s'=0
+E(r+1s)]
S

—N\2> F(r—18)F,(r+1s—s').

s'=0

3.7

avalanche dimension for the subdiffusive spreading of activ-
ity (rP~s) is D=4. Diffusion is slowed down because the
activity has a tendency to revisit sites, and the system re-
members these previously visited sites. Considering
x=rP/s as the scaling variable, the variation of the exponent
is much slower with a “fat” tail (~x*3) compared to a
Gaussian tail {-x with D=2).

In Appendix C we derive the complete leading asymptotic
behavior given in Eq(3.9). Here we will just show how the
history dependence in the ScHimger equation3.8) gives
rise to the non-Gaussian tail in the exponential of 9.

A. Calculation of the fat tail

Using a Laplace transfonﬁ(r,y)=f5°dse*ySF(r,s) Eq.
(3.8) turns into an ordinary second-order differential equa-
tioninr,

VEF(ry)~[2y-V(y)IF(r.y), (3.10
whereV(y) is the Laplace transform of(s). SinceF(r,s)
is falling for larger, it is

F(r,y)~C(y)exd —rv2y—V(y)], (3.1

Now we will focus on the spatiotemporal correlations atand we assume thal(y) is a sufficiently well-behaved func-
the critical point\ =\ .= 1/2. For sufficiently large values of tion neary=0.

r ands we will show thatF,(r,s)—0 for r —oo sufficiently
fast such that we can neglect the nonlinear term in(B().
We can take the continuum limit and obtdi24]

dF(r,s) 1 1J

S
~ _y2 - o ' '
s 2VrF(r,s)Jr 5 V(s—s')F(r,s’)ds,

0
(3.9

a “Schradinger” equation in imaginary time, foF(r,s)
with a nonlocal memory kernal(s)=P(s)—24(s), where
P(s)=P, (s) givenin Eq.(2.2), and5(s) is the usual Dirac

The inverse Laplace transform yields a contour integral
with a contour extending just to the righty&0) of the
imaginaryy axis

joo+ d
Fro~ |7 Thcmentys—rzy—Vm)l
—le+7y
(3.12

The limit of larges corresponds to small values pfwhere

V(y)~ —24y such thaty2y—V(y)~ 2y¥* Note that the
contribution from the left-hand side of E¢3.8) does not

5 function. Note that it is the statistical independence of theeffect the leading order which merely consists of a balance

avalanches foM — that givesV(s) in terms of the prob-

between the terms on the right-hand side. After rescaling

ability distribution of avalanche sizes. The memory in they—Y/s itis

system here is characterized solely in terms of this distribu-

tion.
This nonlocal potential with the integral kerné(s) con-

. (313

C(0 r
F(r,s)~ %Ldyexp{y— \/§<S—1,71> y4

tains all of the history dependence of the process. In its ab- _ _
sence the system would have no memory and be purely diwhereC is a small piece of contour that crosses the feal

fusive with a Gaussian taF~e "%, In its presence the axis from below just to the right of=0. It emerges that

probability to have reached a site at distanad times gets
contributions from avalanches that reacheak earlier times

F(r,s) is exponentially cut off when>s'*>1, determining
that the avalanche dimensionis=4. In that limit, we can

s'<s. These contributions are weighted according toPerform a steepest-descent analysis of the int¢gEgl First,
P(s—s’) which has a power law tail. Avalanches contribut- W& note that the expression in the exponent has a moving

ing to F(r,s) consist of subavalanches, one of which reachesaddle point aty,=

r in time s’ while the other's combined duration &s-s’.

1
al

substitutey=yqv to obtain

435718 To fix the saddle point, we

The subavalanche tree structure gives a hierarchy of time

scales. This changes the relaxation dynamics to be non- c

Gaussian, and we find as our main result that

r4 1/3 413
;> e 3/4(r%/s) (r4>s> 1)

(3.9

Fa (r.s)~(24/m) Y73/

F(r,s)~ (:?zofcdvexp:yo(v—4v1’4)], (3.14

2

where the contou€ is deformed such that it crosses the real
axis on the saddle point ato=1. To find the steepest-
descent path for the contour in the neighborhood of the
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FIG. 6. Counting rates for the activity plotted as a function of

time s. Each curve is labeled in descending orderiby[log,X] i N . ’
wherex=r*/s is the scaling variablgsee Eq.(3.17]. Data with from Fig. 6. All data_ collapses” onto ple}teaus W|t_h a mean value
or each plateau given by< on the right, again labeled by

i>12 has been disregarded due to insufficient statistical accurac;f. N ) )
i =[log,X]. The standard deviation for the data in each plateau is

indicated by error bars.

FIG. 7. The normalized distribution of activit@(r,s) derived

saddle point, we sat~1+e+ié8 with €,6<1. Thus in the

exponent, it isv—4v'*~(—3+ e’ §6)—i(ed), indicat-  plateaus whose mean value and standard deviation is given
ing that the steepest-descent pathich is always also a by the crosses with error bars to the right of each curve.
constant-phase patfs given bye=0 in the neighborhood of ~ Wwe attempted to numerically determine the asymptotic
the saddle point. Thus, we substitute: 1+i 6 in that neigh-  tail of the functiong for large values ok=r*/s by assuming
borhood and obtain the non-Gaussian tail in E39), in accordance with Eq3.9) that
4\ 13 X)~e A x>1. 1
F(r,s)~C’(r,s)exp{—Z(%) g0x)~e @17

(riss>1),
(3.15 From the sequence of plateau values in Fig. 7gtx) we
' determine a sequence of extrapolants

whereC’ (r,s) only contains powers af ands. The function In[ —Ing(x)] InA
C’(r,s), as well as the behavior & (r,s) for s>r4>1, is i T i x>1. (3.18
determined in Appendix C. In Appendix D we will also con-

sider the distribution for avalanches that are fully confined inj, Fig. 8 we plot this sequence of extrapolants as a function
a box of sizer (see Fig. $ and show that the dominant of 1/nx and estimate thaw=0.35+0.03, in reasonable

relaxation behavior is given by E@3.19 as well. agreement with with the value=1/3 from the exponential
falloff for F(r,s). Thus the behavior o&(r,s) is consistent
B. Numerical comparison with the propagator with the non-Gaussian asymptotic behavior of the envelope

We are now in a position to attempt to compare thesefunctlonF(r,s).

results with numerical measurements of the actual propaga-

tor G(r,s). Based on earlier numerical investigatigrg], IV. SCALING RELATIONS

we assume thab(r,s) has the scaling form In the SOC state, spatial and temporal correlations are
;4 interrelated. This interrelation is expressed via scaling rela-

G(r,s)~r'5lg(—) (r¥/s>1). (3.1  tions. In a broad class of SOC models, including the evolu-

S tion models, the knowledge of just two scaling coefficients,

such asr andD, is sufficient to determine any other known
At each updats we determine the locationof the minimal  coefficient of the SOC state, including the approach to the
random number in a surviving avalanche that started aattractor, through these scaling relatig8% We have shown
s=0r=0. We bin counts as a function of dnand in Sec. lll that the activity in the SOC state spreads in a
i =log,(r¥/s) for avalanches of duratios<1C® (see Fig. .  subdiffusive manner~s'P, whereD=4 is the avalanche
We find that the counting rates in logarithmic bins rise lin-dimension. In Ref[17] we have numerically determined the
early withr for each value of; thusé=1. In Fig. 7 we plot  root-mean-square distance of the location of the activity at
the normalized data fo®(r,s) vs s for different values of times and shown that it scales a¥“. In Fig. 9 we show that
i for 10*<s<5x10’. Note that all data “collapses” onto the number of sites covered by the activity also grows as
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FIG. 8. Plot of the extrapolants from Ed3.18 for each FIG. 10. Plot of a part of the sequence of minimal random

i=[log,x] as function of 1/lx. Asymptotically for 1/Ix—0, this ~ NUMDErs\pmin(s) chosen for an update at tingein a A avalanche
sequence approaches the valuexofFrom the extrapolation of the for M=c. The durations of a hierarchy afavalanches is indicated

sequence ta—o (indicated by the lines that extend the sequencePy forward arrows, wheré\=X\nin(s). Longer avalanches with
and its errors to the ordinateve estimaten=0.35+0.03, in good  larger values ok contain many shorter avalanches which have to
agreement withy= 1/3. finish before the longer avalanche can terminate. Note that an up-

date punctuates any avalanche withn <\ ,;(s).

sY4 This verifies that rather than being multifractal there is

only one dimension for the avalanche. ing relationy=(2— 7)/o. The result in Sec. Il for the cutoff

The probability distribution of . avalanche duration is a :2 gthrilgggﬁ fﬂi?(fg?t%ﬂrl gngyiﬁé(gf?h\ée;g%selt Tﬁ ﬁi(;ler
power laW.W'th .eXPO”?”“’: 3/2, gnd we have shown that_ than one dimension shows that all of these above mentioned
the probability distribution of spatial extents of avalanches 'Sexponents are independent of dimension

also a power 'a‘{V with critical expo”e’?'k:& This verifies The punctuated equilibrium behavior, however, does de-
the scaling relatiomg—1=D(7—1). Itis easy to show that o4 oy gimension. Each site is visited many times in a long
the averagi size of an avalanc_he diverges _W'th exponeﬁ(/ed avalanche. The intervals between subsequent returns to
<S.>.~(A)\) with y=1, f"lr.'d previously we derived that.the a given site correspond to periods of stasis for a given spe-
critical exponento describing the cutoff of avalanche sizes .ios As shown in Fig. 1, the accumulated number of returns
below the critical point is 1/2. These results verify the scal-to a given site forms a :‘Devil's staircase”; the plateaus in
the staircase are the periods of stasis for that species. The
punctuations, i.e., the times when the number of returns in-
creases, occupy a vanishingly small fraction of the time scale
on which the evolutionary activity proceeds. The distribution
of plateau sizes is the same as the distribution of first returns
of the activity to a given sit€®grs1(s). We found in dimen-
sions d=<4 that Pgrs(S)~s 7FRST for large s with
TrrsT=2—d/D [2]. ForM —~ in d=1 dimension, the scal-

ing relations therefore predictgrst=7/4. We have mea-
suredrgrst=1.73+0.05.

100 T T

Forward avalanches

The quantityP, (s) is the conditional probability to have
a forward avalanche of size given that the signal at the
. , , starting point was equal to. Such avalanches are defined by
! 10 1% 1000 1009 Jooking at the first moment forward in time when the signal
Nmin €XCeeds its current value It is important to note that
FIG. 9. Plot of the mean widtR(s) of the compact region of this conditional forward probability distribution is exactly
covered sites for surviving avalanches at timdor s<10°. The ~ €qual to the “punctuating” avalanche distribution. Punctuat-
result of a simulation involving oavalanches is given by , and  iNg A avalanches are defined as the intervals separating sub-

the solid line is given by 6.18¢4—1.0), obtained from an asymp- Sequent instances whexy,;,(S)=\; see Fig. 10. For ex-
totic fit of the data for larges. ample, the punctuating =0 avalanches form a sequence
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where all avalanches have sige 1. The probability distri- 05
bution for the\ avalanches does not depend on the precise
value of the site that started theavalanchdas long as it is
=)\) because this value is erased from the system after the 0.4
first update. Thus the minimal numbers selected at different
time steps are distributed as
w 0.34
p()\minZ)\)leS%\ where <S>)\=s§=:0 sP\(s). /<é i
(4.9 02—
Substituting Eq. (2.2 gives (s),=1/(1-2\), and L
P(Amin=A)=2 for 0sA<1/2. 01l
The distribution ofall forward avalancheﬁ’?”(s) is ob- Tt
tained by integrating the conditional probability from Eg. i ]
(2.2) with the proper weightp(A,i,=\) for the starting ool Lo 0
value of the avalanch7,28,4. This distribution measures ' 290 230 240
avalanchesvhich begin at every time step and end at the s

first moment forward in times’'+s when \in(S' +5)
>NAmin(S'). We find in agreement with numerical simula-

. FIG. 11. Same sequenag,in(s) as in Fig. 10, where the dura-
tions that

tions of backward\ avalanches is indicated by backward arrows. A
similar hierarchical structure of subavalanches emerges, although

1/2 A(S) 1 . . s .
pall(g)= A =N)P.(s)d\ = + with a different distribution than for forwarnl avalanches in reflec-
(s 0 Pmin=2)P(S) s  s(2s+1) tion of the irreversibility of the update process.
4.2
_ _ _ S formly distributed between and 1[2].
with A(s) given in Eq.(2.2). For larges this distribution is a To havel,i,(s’ +s)=\ we need the minimal number in
power law the system to lie between and\ +d\. This number can be
0 only in this set of new random numbers, since at the begin-

pal(s)~s 7  where 72" =2. (4.3 ning of thex avalanche every number in the system was by
definition larger than or equal to. The probability that at

This particular exponent?” turns out to be superuniversal |east one of these new numbers will be betweerand

and equals 2 for a wide variety of extremal mod&l8,2]. N+d\ is given by 6+ 1)dN/(1—1\). Increasing the param-
eter to\ +dA, the numbeN of avalanches will be changed
V. BACKWARD AVALANCHES AND ULTRAMETRICITY by dN=—N(s+1)d\/(1-\). Of course the sum of the

temporal durations of these avalanches will remain constant.

~ Due to the irreversible nature of the process, it is interestThijs |eads to the following differential equation for the av-
ing to consider the properties of the system under time regrage size of an avalanche

versal which can be studied in terms of backward ava-

lanches. Now we look for the first momebtck in time din{s), (s+1)

when \ qin(s’ —S)>Anin(s’) =\ [27,28,4. The definitions AN 1 (5.9

of forward and backward avalanches are illustrated in Figs.

10 and 11. These figures demonstrate the hierarchy in th&hich is analogous to Eq16) in Ref.[2], and also shows
avalanche structure: all forward and backward avalanchegat the avalanche size diverges with expongsatl.

that start inside one big forwartbackward avalanche are The numberNi’(s) of valid A backward avalanches of
constrained to not go beyond the limits of the parental avasize s in our ensemble of punctuating avalanches is
lanche and, therefore, can be considered to be its subavmi;(s)d)\:pr(S)(st 1)d\/(1—\). Therefore, the condi-

lanches. Each subavalanche in turn has its own subavgpnal probability distribution ofA backward avalanches
lanches, and so on. One can look at the entire activity as ongyeys

great parental critical avalanche, which began in the distant

past. It contains subavalanches of all sizes. b c(s+1)Py(s) c d[\2P,(9)]
We can determine the distributions farbackward ava- Px(s)= A=n) NI=2n) -
Ianchest(s) and all backward avalanch@lg”(s) exactly. (5.2)

Suppose we have a temporal sequexgg(s’) which is an

ensemble oN, N punctuating avalanches, whexeis a suf- The proportionality constant is determined from the nor-
ficiently large number. The average numbehqfunctuating malization ~ conditon =Z_,P’(s)=1, so that ¢
avalanches of sizes in such an ensemble is given by = (1—2\)/2.

N(s)=NP,(s). At the end of any\ avalanche of sizes, The distribution of all backward avalanches measures
precisely 6+ 1) new random numbers have been introducecavalanches which begin at every time s&pand end at the
into the system that were not there when the avalanche bdéirst moment backward in time s'—s, when
gan. All these random numbers amacorrelatedand uni- A in(S' —S)>NAmin(s’). We find
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SOC which could indicate that glassy dynamics takes place
near a critical point. Recently Stein and Newnj&i] have

put forward a picture of dynamics on a high dimensional
rugged fitness landscape based on an invasion percolation
(SOQ picture.

Finally, we note that our model may fit into the picture of
hierarchically constrained dynamics put forward by Palmer,
Stein, Abrahams, and Anders$82]. We have an equation
of motion for the dynamics which takes place in terms of
avalanches spanning all time scales. These avalanches are
our hierarchically constrained degrees of freedom. Looking
at Fig. 10 one notices that evexyavalanche is composed of
subavalanches which are fully contained within it. Each
avalanche cannot terminate until its subavalanches finish, so
that the faster degrees of freedom successively constrain
slower ones and form a hierarchy.
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FIG. 12. Log-log plot of the distribution for the duration of
backward avalanchesH) and the distribution for the ultrametric
distances between subsequent minimal sitg3.(Both functions
seem to coincide asymptotically for large

1/2
all oy _ _\\pb
P (s) fo P(Xmin=M)PX(s)d APPENDIX A: SOLUTION OF EQ. (3.3

['(s+1/2) 1 It is straightforward to solve Eq3.3) using a generating
= 2T (12T (s+ 1) + 2525+ 1) (5.3 _fup_ction. Dgfining PA(X) ==L ox°Py(s) and applying the
initial conditions [see Eq.(3.2] P,(0)=0 and P,(1)
=(1-\)2, we find

At large times this distribution is a power lawd'(s)
1l
~s % where 72"'=3/2. Here we have explicitly demon-

strated that time reversal symmetry is broken. The forward

and backward avalanches have different probability distribu-

tions and different scaling limits at large times. Equation

(5.3 is in perfect agreement with numerical simulations.  an ordinary quadratic equation for the generating function.
Unless the backward avalanche has sizel, two ex- Its only acceptable solution is

tremal values that are chosen at subsequent times must have

PA(X) = (1=N)2=2M (1= N)xpy(X) + A?Xpy ()2,
(A1)

both been present when the first of them was chosen. These [1— V1= 4n(1—N)X]?
two barrier values will have some ultrametric distance be- py(X)= 2 . (A2)
X

tween them. This ultrametric distance must be less than or
equal to the backward avalanche size, because the extremal
value that terminates a backward avalanche must be an afmhe solution forP,(s) in Eq. (2.2) is simply given by the
cestor toall of the extremal values in that backward ava- coefficients inx of the Taylor series op, (X).
lanche. The probability to have an ultrametric distance larger The generating functiop, (x) has a square-root singular-
thans is bounded above b?"g‘”(s). We have numerically ity which determines the asymptotic behavior of its Taylor
measured the ultrametric distance between subsequent actiseefficients, i.e.P,(s). We point out that this asymptotic
ity and find a power law. In fact, as shown in Fig. 12 it hasbehavior is a robust feature with respect to changes in the
the same leading asymptotic behaviorl% within numeri-  way the model is updated at each time step. For instance, if
cal accuracy. we had not chosen to set the barrier with the current mini-
We conclude by speculating about connections with othemum to unity but to replace it also with a new random num-
phenomena related to glassy dynamisse also Refl21]).  ber, we would have obtained a cubic equationdpfx); the
The directed polymer in a random medi®PRM) [29], solution of which would still be dominated by a square-root
which could be a paradigm for glassy systems, exhibits assingularity. Furthermore, an update including more than
ultrametric structure in the optimal paths as well as a nonhearest-neighbor sites would lead to even higher-order alge-
Gaussian tail for the probability distribution of these paths.braic equations fop, (x), which are still dominated by the
These paths are somewhat analogous to the activity pattesame square-root singularity. It would be interesting to con-
in our model. However, unlike the DPRM, our model is in- sider changes in the updating rules that in fact would replace
herently dynamical. Tang and B&R0] found stretched ex- the leading square-root singularity, and the physics that such
ponential relaxation for the current in a sandpile model ofnew rules indicate.
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APPENDIX B: CALCULATION OF EQ. (2.9 this limit. We also sey(z)=f(i,r), wherey is a function of
z that depends on as a parameter. Thus we can rewrite Eq.

Letr be a non-negative integer. LBI(i,r) be the prob- (B5) as

ability that aix . avalanche which starts at sitewill always
be completely contained inside a box of radiusentered at 1 1
the origini=0. By definition,N(i,0)=0 because in the ini- 2Yy"(2)= §y(2)2 (B8)
tial state the avalanche already contains one barrier which

certainly will never be contained inside a box of vanishingtg |eading order in the limit —. For the boundary condi-

radius. _ o tions atz=0 andz=1 we find from Eqs(B6), (B7)
The properties of an avalanche starting aan be related

to the properties of avalanches starting atl andi+1 by 1, 1 , 1 3 1
considering all possible states of the avalanche after the first V' (0)=2y(07% —y' (D==Zy(L)+5. (B9
step. No new active barriers are created after the first step

with probability (1-\)?=1/4 and the avalanche terminates We note that we can obtain an equation for any valua of
without ever spreading beyond the dité single new active

barrier is created after one time step either to the left or the V(=] =2
right of i, each with a probability of,(1—\)=1/4, and 2V (2=}
N(i,r) is related toN(i—1,) or N(i+1y), respectively. _ _
Finally, with a probability ofA2=1/4 two new active barri- Which reduces to EqB8) for A=A\ Itis easy to show that
ers are created at-1 and ati + 1, and the avalanche starting the linear term dominates on the right-hand side for
ati will never leave the box if neither avalanche ensuing® <Ac. leading to avalanche distributions with an exponen-

fromi—1 andi+ 1 will ever leave the box. Thus, assuming tial cutoff for larger.

y(2)+\y(2)? (B10)

throughout that >1, it is for |i|<r—1 We can integrate EqB8) using standard techniques for
autonomous ordinary differential equatiof25]. We set
NG,r)=2+ L[NG—1r)+N(i+1r)] u(y)=vy,(z), use the chain rule to gst'(z)=u’(y)u(y),

and integrate once to find
+ING—10)NG+1r). (B1) L
—y'(z)=*=(1/13)y(2)*+C. (B11)
Clearly, N(i,r)=0 for all |i|=r, leading to the boundary r

condition fori=r-1, Sincey(2) is a rising function ofz, we choose the positive

root. The integration constai@ can be rewritten using the
boundary condition az=0 in Eq. (B9) asC=— % y(0)3,
where we neglected terms of higher orderyif0) because
y(0) is expected to be small for—co.

Integrating one more time we obtain

N(r—1r)=32+ IN(r—2yr). (B2)

SinceN(i,r) is symmetric in its first argument, we will only
consider non-negative valuesiofnd obtain another bound-
ary condition at =0 from Eq.(B1)

NOr)=2+ IN(1r)+ N2 (B3) fﬂzﬂy(o) a¢ =zr y(©O)** (B12)
3 4 2 3 4 ’ 1 \/ﬁ 3
We can simplify Eq(B1) by substituting We find atz=1, using Eq.(B9), that y(1)=2/3, because
N(i,r)=1—f(i,r) (B4) y’'(1)/r<1. Thusy(1)/y(0)—«, and we obtain Eq2.4)
2 2
to obtain for O<i<r—1 f(Or)~y(O)~i = d{ 1 L($I(3) 1
| V-1 3 g
A(i,n)=3f(i—1n)f(i+1r), B5

if(i,r)=z1f( )( ) (BS) 17 69 o
whereA,; is a difference operator. EquatidB3) leads to a oz (B13)

boundary condition ait=0, ) » ] .
Note that this result verifies our assumption tlyg0) is

. _1 2 small. Using dominate balance techniq(i2§] we can show
Af(I=1n=3110% (B6) that this solution is in fact the only consistent solution.

while Eq. (B2) gives another boundary condition for
i=r—1, APPENDIX C: LEADING ASYMPTOTIC BEHAVIOR

OF THE SPATIOTEMPORAL CORRELATIONS

Af(i=r—1r)=— Sf(r—2s)+ L. (B7) WITH RESPECT TO A PARTICULAR SITE

The nonlinear integro-difference E¢B.7) can be solved
To make further progress we assuni1, which allows to  exactly in the continuum limit. Taking the continuum limit is
consider the continuum limit of E¢B5). We setz=i/r such  justified because we are ultimately interested in the behavior
thatz is a continuous variable in the unit interval for anin of F(r,s) for sufficiently large values aof ands. In general,
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to obtain the asymptotic behavior of a difference equationThus we obtain from Eq(C4) a closed-form expression for
from the corresponding differential equation can be trickythe envelope function of the spatiotemporal distribution of
even in the linear cag®5]. But comparison with our calcu- avalanches

lation in Appendix D, where the continuum limit poses no

problem, independently confirms our approach here. dx .
With f(r,x) =27 ox5F,(r,s) andp(x)==5_x°P,(s) as Fa(r,s)~— ﬁﬁx STH(r,x), (CH
generating functions, we obtain from E¢B.7), using Eg.
(A2), where the contour encircles a small neighborhood of the ori-
Aff(r,x)zA(x)f(r,x)JrB(x)f(r—1,x)f(r+1,x), gin in the complexx plane in the positive dlrect|qn.
From now on, we only consider the critical case
f(0x)=p(x), and f(,x)=0, (C) A=A =1/2. The integrand in EqC5) can be expanded for
large s in the neighborhood ofx=1 by substituting
defining x=1-—u/s. Then the integration fon follows a contour that

crosses the positive real axis from above near the origin in

1—-2xA(1=\) = 2xA?p(x) the complexd plane. With

AG)= XA(1—=N)+xX\%p(x)
u 1/2
X)\Z 5 p(X)"‘l—Z(g +2g,
B0 = T #0200 €

We can take the continuum limit of E4C1) and get to u|*? u
. : . A~2| -] +2-,
leading order for large an ordinary second-order nonlinear S S

differential equation foif as a function of
1/2

f(r)"=AKr)+Bf(n2 f(0)=p, f(=)=0, (C3 B= ;Jr %(g) , cH)

where we have suppressed dependence on the paraxneter
Using again the techniques for autonomous equatisee e find
Appendix B and the fact thaff(«)=0, Eq. (C3) can be

solved exactly to give du ! u
. 2Bp| 12 L . F(r,s)~ Cﬁef r,l—g , (C7)
f(r)=p cosl’(i\/ﬂr + 1+3—A) sml—(z\/ﬂr” :
(C4  where an analysis of EqC4) yields
|
12 u\ 2/ 2 u\ 32 6 .
-3 €+1 + 5 7_56+ R (1<r®<s),
u

f( . g) - o )

u 1/2 u
— — — s<r?).

24( s) ex;{ \/§r< S ( )

In the first case of EqC8) we have neglected terms with integer powers iwhich would vanish in the following integration.

Forr4s>s, we evaluate the integral fét(r,s) by steepest-descent analysis similar to Sec. lII, but taking account also of the
nonexponential factor in the integrand. Fogfi*<s, we use Hankel's contour integral representation ofltheinction [33]

1 du cg
T(—») Jeom®H (€9
to find
1 6 ré
_~ &—3R2 T T <ri<
7Ts 1+r2+84s+ ) (1<r?<ks),

F(r,s)~ (C10

4\ 1/3 4\1/3
\/2153’2(3 exp{—%(%) } (rf>s>1),
v

where the second case is our main result for the non-Gaussian tail given {8.4q.
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APPENDIX D: LEADING ASYMPTOTIC BEHAVIOR 1 1.5
OF THE SPATIOTEMPORAL CORRELATIONS P(r,s+1,0==P(r,s1)+ = > P(r,s',))P(r,s—s',1)
WITH RESPECT TO A BOX 2 450

In this appendix we calculate the distribution for the size (s=1r=1). (D3
of a box in space and time such thah aavalanche will be
fully contained in it. This notion, which easily generalizes to Since P(r,s,i=r)=0, we obtain a second boundary condi-
higher dimensions, extends on the calculation in Sec. lll angign ati=r—1
Appendix C, where we only considered avalanches with re-

spect to a single site. While the calculation h@nich is 1

similar to Appendix B is somewhat more extensive, the re- P(r,s=1r-1)=7P(r,sr-2) (s=1r=2). (D4
sults are virtually identical and justify our simplified ap-

proach in Sec. lIl. Using Eq.(D1), and definingf(r,x,i) =7 xF(r,s,i),

Let P(r,s,i) be the probability for & avalanche, which
starts at times=0 with a single active barrier on siie to
have no active barriers for the first time at tiieand to not 2 o : : :
have left a box e (—r,r). We merely consider avalanches ATHIr XD =ACOT(r X, +BOOF(r X, i =T xi+1),
in the critical state and sek=\.=1/2. By definition, (DY)
P(r=05s,i)=0 for all s=0. FurthermoreP(r,s=0i)=0  \hereA(x) andB(x) are the same as in E(C2), supple-
for all r, because by definition no avalanche ends at timgnented by the boundary conditions
s=0. Ultimately, we want to find the distributioR(r,s,0)
of avalanches of duratios that start at the origim=0 and
are completely contained in a box of radius A generic Aif(r,x,i=1)=
avalanche is plotted in Fig. 5; the smallest box it is fully
contained in is of size=18 in this case. In correspondence

we obtain for Eisr—2

1—X—X f 1+Xf 1)?
4 4p(X) (l‘,X, ) 4 (r,X, ) L]

with Eq. (3.1 it is Aif(r,x,izr—l):G—l)f(r,x,r—2)
F(r,s,i)=P(r=«,s,00—P(r,s,i), (D)
whereP(r=x,s,0)=P,(s) is given in Eq.(2.2). - D(X)< 1- 2) - 2 (D6)

As before, the properties of an avalanche that originates at

s=0 can be deduced from the properties of avalanches that ag pefore in Appendix C, we expand the equations in the

ensue after the first update. The original avalanche can eithgrit x .1 to analyze the avalanche distribution for large
terminate after the first update when the update does N@fmess. Then Eq.(D5) simplifies for I<i<r—2 to

produce any new active barriers with probability
(1—\)2=1/4, or it can generate new avalanches by creating AZF(r x i)~ 21— xf(r,x,i)+ & f(roxi—1)f(r,xi+1)
new active barriers. If the first update creates exactly one ' = '’ e o (D7)
new barrier with likelihood\ (1—X\)=1/4 either to the left

or to the right of sitei, the properties of an original ava- with the boundary conditions

lanche of duratiors is related to the properties of an ava-

lanche of durations—1 with regard to a site of distance Aif(r,x,i=1)~\1—xf(r,x,1)+ 2 f(r,x,1)2,

i—1 ori+1, respectively. If the first update creates two new
active barriers with probabilith>=1/4 to the left and the
right of sitei, two new avalanches ensue. Then, the proper-

ties of the original avalanche of duratianis related to the g g fficiently larger, we can take the continuum limit of
properties of all combinations of two avalanches of COM-thage equations wherf(r,x,i)—y(z2)/r? with z=i/r as a

bined duratiors— 1. For any such combination, the probabil- -, htin0us variable in the unit interval. Equaticims) then
ity to not leave the box when starting at sites given simply approach

by the product of the probabilities for the two ensuing ava-

lanches to not leave the box after starting at $itel or Mo\ — 92 1 2

. . . . 2)=2r°y1-xy(z)+ 3 y(2)%,

i+1, respectively. We thus obtain foe=1 and|i|<r that y'(2) v+ zy(2)
P(r,s=1,)=1/4, and for alls=1 that

Aif(rxi=r—1)~—3f(r,x,r—2)+ 3. (D8)

y'(0)=ry1—-xy(0),

1 . .
P(r,s+1i)=,[P(rsi-1)+P(rsi+1)] y(1)=2r2 (D9)
13 . . We can obtain a first integral of EGD9) using again the
+ Z'Eo P(r,s",i—1)P(r,s—s',i+1). technique for autonomous equations:
s'=

(D2)

Since P(r,s,i) is symmetric ini, we restrict ourselves to
non-negative values df leading to a boundary condition at

1/2
1=0: X[Y(Z)z—y(o)z]] , (D10)

y'(2)= i( %[y(z)*"—y(o)"%2r’1(1—x)”2
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assuming thaty’(0)—0 for r—o sufficiently fast. Since which yields
y(2) is a rising function ofz, we have to chose the positive

: . . : 0
root. Integrating again, and usiryg1), we obtain f(r,x,0)~ ¥~3 [1T—xexp(— v2r(1—x)Y4
2 d 0 1/2
er 3y(0) ¢ N[y( )} i [1<r(1-x¥), (D13
1 VE-1+a(?-1) | 3
) and by steepest-descent analysis as before
6reyl—x
with o= ———. (D11 3(r4\ 1. .
y(0) F(r,5,0~C(r,s)exp — 4 5] | (Tss=r )
Fory(0)<r?J1-x, i.e., a>1, we get (D14
0¥z 1 [3 confirming the non-Gaussian tail found in Eg§.9). A simi-
M} ~——In|=al, (D12) lar consideration of the integral in E¢D11) would deter-
3 Va 12 mine the behavior for?>y(0)>r2\J1-x, i.e., a<1.
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