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Slowly driven dissipative systems may evolve to a critical state where long periods of apparent equilibrium
are punctuated by intermittent avalanches of activity. We present a self-organized critical model of punctuated
equilibrium behavior in the context of biological evolution, and solve it in the limit that the number of
independent traits for each species diverges. We derive an exact equation of motion for the avalanche dynamics
from the microscopic rules. In the continuum limit, avalanches propagate via a diffusion equation with a
nonlocal, history dependent potential representing memory. This nonlocal potential gives rise to a non-
Gaussian~fat! tail for the subdiffusive spreading of activity. The probability for the activity to spread beyond
a distancer in time s decays asA(24/p)s23/2x1/3exp@23/4x1/3# for x5r 4/s@1. The potential represents a
hierarchy of time scales that is dynamically generated by the ultrametric structure of avalanches, which can be
quantified in terms of ‘‘backward’’ avalanches. In addition, a number of other correlation functions character-
izing the punctuated equilibrium dynamics are determined exactly.@S1063-651X~96!05108-2#

PACS number~s!: 05.40.1j, 05.70.2a, 87.10.1e

I. INTRODUCTION

Many natural phenomena evolve intermittently rather than
following a uniform, gradual path. In particular, the dynam-
ics of systems out of equilibrium may follow a steplike pat-
tern with long, dormant plateaus interrupted by sudden
bursts, or avalanches, where the accumulated stress is re-
leased. Avalanche dynamics violates the picture of gradual-
ism where large systems evolve continuously, for instance,
to a local energy minimum. The bursts which separate sub-
sequent metastable states may eventually span all scales up
to the system size@1# thus providing a general mechanism
for long-range spatiotemporal correlations. The appearance
of fractals, 1/f noise, Levy flights, etc., have been unified by
relating these phenomena, in a broad class of nonequilibrium
models, to an underlying avalanche structure@2#.

Even though the theory of uniformitarianism, or gradual-
ism, has historically dominated both geology and paleontol-
ogy, prototypical examples of avalanche dynamics lie in
these two domains@3#. For instance, the distribution of earth-
quake magnitudes follows a power law found by Gutenberg
and Richter@4#. The scale-free variation from small events to
large events indicates a common dynamical origin and even-
tually led to the suggestion that earthquakes are an example
of self-organized criticality@5#. Most of the time, the crust of
the earth appears stable. These periods of apparent equilib-
rium are punctuated by earthquakes, which take place on a
fractal fault structure@6# that stores information about the
history of the system.

Actually, over twenty years ago, Gould and Eldredge pro-
posed that biological evolution also takes place in terms of
punctuations, where many species become extinct and new
species emerge, interrupting periods of low activity@7#. In
this context, punctuated equilibrium usually refers to the in-

termittent dynamics of single species, where morphological
change is concentrated in short intervals in time interrupting
long periods of stasis. These punctuations may be correlated
to large extinction events in the global ecology, which may
themselves be distributed according to a power law analo-
gous to the Gutenburg-Richter law for earthquakes@3,8#.

This view was promoted by Bak and Sneppen@9# who
introduced a simple self-organized critical~SOC! model for
coevolutionary avalanches of different species in an ecology.
The model explicitly treats macroevolution as a many-body
statistical problem where the fitness landscape in which each
species evolves is affected by changes in other species in the
ecology. The mutation of the ‘‘least fit’’ species in the sys-
tem completely changes the fitness landscape of some other
species and coevolution with punctuated equilibrium behav-
ior is obtained. This occurs without fine tuning parameters
and without the need for external shocks leading to cata-
clysms of mass extinction. The extinction events~ava-
lanches! have a power law distribution of sizes, where most
extinction is concentrated in the largest events. This fact pro-
vides some theoretical underpinning for catastrophism rather
than uniformitarianism as the defining characterization of
evolutionary history@10#. The model may capture some ro-
bust features of real evolution, such as punctuated equilib-
rium and catastrophism, in spite of its drastic simplifications.

In fact, Ito @11# has related the spatiotemporal pattern of
earthquakes in California to the avalanche pattern found in
the Bak-Sneppen evolution model. The data for the pattern
of successive earthquakes over time may be fractal in space
and time, so that each earthquake can be viewed as a single
event within a much larger avalanche structure consisting of
many earthquakes. If this picture is correct, earthquakes can
be described as a ‘‘fractal renewal process’’@2,12# with a
power law distribution of times between subsequent earth-
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quakes in a given region. The analogy can be made by re-
placing the least fit species with the weakest link in the
earth’s crust. Ito’s observations of return times for earth-
quakes in California are consistent with general scaling rela-
tions valid for the Bak-Sneppen model, as well as other ex-
tremal SOC models@2# for invasion percolation@13#,
interface depinning@14#, and flux creep@15#.

Although the Bak-Sneppen model is an extremely simple
model of SOC and a few exact results as well as many scal-
ing relations are known for it@2#, it has not ~yet! been
solved. A variety of similar evolution models have been sub-
sequently introduced to incorporate more aspects of reality
such as speciation and external shocks@16#. These models
have been primarily studied numerically.

Recently, we have proposed a multitrait evolution model
with M independent, internal degrees of freedom for each
species@17#. This model is solvable in the limitM→`; it
includes the Bak-Sneppen model whenM51. We have pre-
viously reported some of the simplest results@17#. Here we
present a more extensive analysis of the model. Note that the
M→` limit is not mean-field theory@18# because it contains
spatial correlations and punctuated equilibrium dynamics. In
addition, we find rigorous results that might be too delicate
to detect with numerical calculations alone, such as the non-
Gaussian tail for the distribution of activity.

The multitrait evolution model incorporates the notion
that the survivability of each species depends on a number of
independent traits associated with the different tasks that it
has to perform in order to survive@19#. Evolution proceeds
via an extremal dynamics where the species in the global
ecology with the lowest barrier to mutation, or the least fit,
mutates. This event affects certain barriers to mutation or
fitnesses of other species in the system which are related
through, for instance, a food chain. As a consequence of the
interaction between species, even species that possess well-
adapted abilities, with high barriers, can be undermined in
their existence by weak species with which they interact.
This may lead to a chain reaction of coevolution. The pattern
of change of individual species exhibits punctuated equilib-
rium behavior which comes from episodes of mass extinc-
tion events sweeping through the species. Punctuated equi-
librium is described by a Devil’s staircase, as shown in Fig.
1. The introduction of many internal traits for each species is
consistent with paleontological observations indicating that
evolution within a species is ‘‘directed’’@19#; morphological
change over time is concentrated in a few traits, while most
others traits of the species are static.

Our main analytical results are as follows: ForM→`, we
derive an exact equation of motion, given in Eq.~3.7!, for the
macroscopic observables in the SOC state from the micro-
scopic dynamics. From this equation, which is our central
result, one can extract separate equations for the temporal
and spatial distribution of avalanche sizes, both of which are
determined exactly in Eqs.~2.2!, ~2.3! and were previously
derived by us in Ref.@17#. In the continuum limit, the sub-
diffusive dynamics is given by a ‘‘Schro¨dinger’’ equation
with a nonlocal potential in time Eq.~3.8!. This potential
represents memory. The exact asymptotic solution Eq.~3.9!
of the Schro¨dinger equation at large length and time scales
has a non-Gaussian tail. This solution describes the non-
trivial spatiotemporal pattern of activity in the self-organized

critical state. The anomalous diffusion arises from a long-
term memory effect due to the ultrametric tree structure@20#
of avalanches. This tree structure of activity is quantified by
calculating the ultrametric distances between subsequent ex-
tremal ~minimal! sites. The probability distribution for this
distance is a power law at large times and asymptotically
approaches the probability distribution of all backward ava-
lanches. This latter quantity, which we will define in the text,
is calculated exactly in Eq.~5.3!. A number of other distri-
bution functions are also determined. The critical exponents
are D54, t53/2, tR53, g51, n5s51/2, t f

all52,
tb
all53/2, and tFIRST522d/4. The nonlocal time depen-
dence of the dynamical equations and the ultrametric struc-
ture of avalanches suggest a possible relation between glassy
dynamics and self-organized criticality@21#.

In Sec. II, we introduce our model and show that it self-
organizes to the critical state. It is demonstrated that ava-
lanches in the critical state have an ultrametric tree structure.
In Sec. III, we derive the equation of motion for the critical
state for theM→` model and present our main analytical
results for the anomalous diffusion. In Sec. IV, we show that
the critical behavior is characterized by simple power laws
with specific exponents that verify general scaling relations
for nonequilibrium phenomena. In Sec. V we calculate the
distributions for ‘‘backward avalanches.’’ Due to irrevers-
ibility these differ from the usual ‘‘forward’’ avalanche dis-
tributions. The backward avalanches can be related to the
ultrametric distances between subsequent activity. Most de-
tails of our calculations have been deferred to the Appendi-
ces.

II. THE MULTITRAIT EVOLUTION MODEL

Our model is defined as follows: A species is represented
by a single site on ad-dimensional lattice. The collection of
traits for each species is represented by a set ofM numbers
in the unit interval. A larger number represents a better abil-
ity to perform that particular task, while smaller numbers
pose less of a barrier against mutation. Therefore, we ‘‘mu-

FIG. 1. Punctuated equilibrium behavior for the evolution of a
single species in the one-dimensionalM5` model. The vertical
axis is the total number of returns of the activity to some site as a
function of times. Note the presence of plateaus~periods of stasis!
of all sizes. The distribution of plateau sizes scales ass27/4.
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tate’’ at every time step the smallest number in the entire
system by replacing it by a new~possibly smaller! number
that is randomly drawn from a flat distribution in the unit
interval P. Choosing the smallest random number mimics
the Darwinian principle that the least fit species mutates@22#.

The dynamical impact of this event on neighboring spe-
cies is simulated by also replacing one of theM numbers on
each neighboring site with a new random number drawn
from P. Which one of theM numbers is selected for such an
update is determined at random, since we assume that a mu-
tation in the traits of one species can lead to an adaptive
change in any one of the traits of a dependent species. The
interaction between the fitnesses of species leads to a chain
reaction of coevolution.

A. Self-organization

The sequence of selective random updates at extremal
~minimal! sites with nearest-neighbor interactions drives the
system from any initial state to a self-organized critical state
in which species exist in a state of punctuated equilibrium
with bursts of evolutionary activity that are correlated over
all spatial and temporal extents. In this state almost all spe-
cies have reached fitnesses above a SOC threshold, enjoying
long periods of quiescence, interrupted by intermittent activ-
ity when changes in neighboring species force a readjust-
ment in their own barriers. A snapshot of the stationary state
in a finite one-dimensional system is shown in Fig. 2.

The self-organization process for the finiteM model is
similar to that for the Bak-Sneppen model (M51). It is
described by a ‘‘gap’’ equation that relates the rate of ap-
proach towards the stationary attractor to the average ava-
lanche size. This equation demonstrates that the stationary
state of the system is a critical state for the avalanches, where
the average avalanche size diverges. Following Ref.@2# we
define the gapG(s) to be the largest of the minimal random

numbers selected up to times, given an initial state at
s50 where all the random numbers are uniformly distrib-
uted in the unit interval. Therefore,G(s50)5O(1/MLd).
As evolution proceeds, the gapG(s) increases monotoni-
cally in a stepwise fashion with intermediate plateaus that
become longer and longer. These plateaus occur when sub-
sequent minimal random numbers in the system are smaller
than a minimum at some previous time. One can assign to
each plateau an avalanche which starts and ends with con-
secutive changes inG(s), and which consists of all the ran-
dom numbers in the gap belowG(s). As the gap increases,
the probability for the new random numbers to fall below the
current gap increases also, and longer and longer avalanches
typically occur.

Following Ref.@2# again, it can be shown from the law of
large numbers that in the limit of large system sizesL, the
growth of the gap versus times obeys the gap equation

dG~s!

ds
5

12G~s!

MLd^S&G~s!
. ~2.1!

As the gap increases, so does the average avalanche size
^S&G(s) , which eventually diverges asG(s)→Gc . In the
limit L→`, the density of sites with random numbers less
thanGc vanishes, and the distribution of random numbers is
uniform aboveGc . The gap equation~2.1! contains the es-
sential physics of SOC phenomena. When the average ava-
lanche size diverges,^S&G(s)→`, the system becomes criti-
cal. At the same timedG/ds approaches zero, which means
that the system becomes stationary. For any finiteM the
process of self-organization is the same as for theM51
model, and all of the results derived for that case apply.
SinceM just enters as a rescaling of the system sizeL in Eq.
~2.1!, it is plausible that the critical behavior for any finite
M is in the same universality class as forM51. We have
shown @17# that the limitM→` is a different universality
class.

B. Ultrametricity of avalanches

It is useful to consider the case where, at a certain time,
the smallest random number in the system has the valuel. A
l avalanche by definition consists of all subsequent random
numbers which are belowl. Thel avalanche that started at
s ends at the first instants1s8 when the smallest random
number in the system is larger thanl. All of the random
numbers that are below the threshold valuel at any one
instant in time are called ‘‘active’’ because they make up the
l avalanche.

We now consider the sequence of minimal values
lmin(s) comprising anyl avalanche. Each valuelmin(s)
has a parent barrier valuelmin(s2s8) preceding it within the
l avalanche. This parent is the barrier that introduced the
particular random number into the system that became the
minimum at times. Obviously, the parent of thelmin(s)
value also has its own parent. One can therefore place all of
the barrier values within a given avalanche onto a tree, as
shown in Fig. 3. The distance on the tree between any two
active barrier values at a given time is determined by the
most recent common ancestor of the two values. This dis-
tance is ultrametric@20#. In Sec. V we relate the probability

FIG. 2. Snapshot of the stationary state in a finite one-
dimensional system for theM51 ~Bak-Sneppen! model. Except for
the avalanche which consists of small fitness values in a localized
region, almost all the fitness values in the system are above a self-
organized thresholdlc .
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distribution of the ultrametric distances between subsequent
minimal random numbers to the distribution of all backward
avalanches, which is determined exactly.

C. The limit M˜`

For finite M , active barriers can be eliminated both by
becoming the global minimum at some time, or by being
chosen in the nearest-neighbor interaction when the global
minimum occurs on a neighboring site. The caseM→` of
the model is special because the existing active barriers that
any species possesses can only be changed if these barriers
themselves become the global minimum, despite the nearest-
neighbor interaction in the model. Since there are infinitely
many barrierson each site, no existing active barrier is ever
likely to be chosen for an update in a nearest-neighbor inter-
action. The nearest-neighbor interaction can only create new
active barriers. This fact allows us to formulate a cascade
mechanism which can be solved exactly.

In what follows we shall consider the stationary state be-
havior in the limit of infinite system size, and confine our
presentation to thed51 dimensional case of our model with
M→`. We point out later which critical exponents are di-
mension dependent and dimension independent, and we will
discuss in more detail the results for higher dimensional lat-
tices elsewhere@23#. To simplify the algebra further, we
make a slight modification of the model without restricting
the generality of the results: At each time step during the
avalanche, the smallest active barrier is set to unity instead of
being replaced by a new random number. Then, there is ei-
ther no new active barrier created with probability
(12l)2, or one such barrier is created to the left or to the
right of the minimum with probabilityl(12l) in either
case, or two active barriers are created to the left and the
right of the minimum with probabilityl2.

The spatial and temporal correlations in our model can be
separated into two independent equations of motion for the
width and duration of avalanches. For instance, the distribu-
tion of avalanches sizess is given by~see Appendix A!

Pl~s!54sls21~12l!s11A~s!

A~s!5
G~s1 1

2 !

G~ 1
2 !G~s12!

. ~2.2!

For l5lc51/2, Plc
(s);s2t for large sizes witht53/2.

For l,lc , the critical avalanches are subdivided into
smaller avalanches and the distribution acquires a cutoff. The
critical behavior is quite different than theM51 model
where the numerical result ist.1.1 in one dimension@2#.
The model forM5` clearly represents a different univer-
sality class than the original Bak-Sneppen model. Actually,
the temporal behavior in this case is identical to the temporal
behavior of the random-neighbor evolution model@18#.

Unlike the random-neighbor model, though, theM→`
model also exhibits spatial correlations, leading to punctu-
ated equilibrium behavior. In Ref.@17# we found that the
probability f r of a lc avalanche to ever affect a particular
site of distancer from its origin is exactly given by

f r5
12

~r13!~r14!
, ~2.3!

implying that the probability for an avalanche to reach pre-
cisely to a site of distancer falls asymptotically asr2tR with
tR53. Noting that one particular site can not fully contain
the spread of an avalanche, we have obtained an equation for
the probabilityf (0,r ) of a lc avalanche to start at the origin
and to ever leave a box of radiusr around its origin. The
leading asymptotic behavior of the solution for confined ava-
lanches is given by

f ~0,r !;
1

3 FG~ 1
6 !G~ 1

2 !

G~ 2
3 !

G 2 1r 2 ~r→`!, ~2.4!

confirming thattR53. The calculation leading to Eq.~2.4! is
given in Appendix B. A comparison of numerical results for
f (0,r ) with the asymptotic behavior, given in Fig. 4, show
perfect agreement.

FIG. 3. Ultrametric tree structure. At any given time, indicated
by the vertical axis, all of the active sites below threshold have an
ancestry which forms a tree. The ultrametric distance between any
pair is the distance back in time to the first common ancestor.

FIG. 4. Numerical verification of Eq.~2.4!. We sampled the
probability for an avalanche to start at the origin and to be con-
tained by the smallest possible box of radiusr for r<250 with
increments ofDr510. Squares represent the measured values from
a sample of 23106 avalanches for this probability, corresponding
to 2] r f (0,r );35.48 . . . r23 which is drawn as a solid line.
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III. THE CASCADE EQUATION AND MAIN RESULTS

Ultimately, spatial and temporal correlations are interre-
lated through the microscopic rules for the propagation of
activity in space and time. Ideally, one would like to deter-
mine the propagatorG(r ,s) which is the probability that the
minimum barrier value will be located at positionr at time
s given that it was at location 0 at time 0 for the infinite
lc avalanche. We have not been able to analytically calcu-
late this quantity directly. We have instead focused on a
different quantity. LetFl(r ,s) be the probability for al
avalanche to survive preciselys steps and to have affected a
particular site of distancer from its origin. Conceptually, the
quantity Flc

(r ,s) may roughly correspond to an envelope

function of the propagatorG(r ,s). This relation betweenF
andG is explained in Fig. 5. Due to the lack of any scale in
the model, it is plausible that the asymptotic behavior ofG
andF is identical, as comparison with numerical calculations
suggests.

The direct analysis of this envelope function proves to be
rewarding in many respects. We find a cascade equation
which can be reduced to separate equations for spatial and
temporal correlations. In the continuum limit, the avalanche
dynamics is given in terms of a Schro¨dinger equation with a
nonlocal potential in time. We solve this equation to find the
leading asymptotic behavior ofFlc

(r ,s). This calculation
yields a non-Gaussian tail in the distribution with an ava-
lanche dimensionD54, signaling subdiffusive behavior for
the spread of activity.

First, we considerPl(r ,s), the probability that thel ava-
lanche dies precisely afters updates and doesnot affect a
particular siter away from the origin of the avalanche. The
quantitiesPl(r ,s) andFl(r ,s) are simply related

Pl~r ,s!5Pl~r5`,s!2Fl~r ,s!, ~3.1!

wherePl(r5`,s)5Pl(s), as given in Eq.~2.2!. Since we
consider the avalanche to start with a single active barrier at
r50 and s50, it is Pl(r50,s)[0 for all s>0, and
Pl(r ,s50)[0 for all r because the avalanche has not died
at s50. The remaining properties of al avalanche can be
deduced from the properties of avalanches that ensue after
the first update. It will terminate with probability (12l)2

after the first update when the update does not produce any
new active barriers. Thus it isPl(r ,s51)[(12l)2. For
avalanches surviving untils>2 we find for r>1

Pl~r ,s!5l~12l!@Pl~r21,s21!1Pl~r11,s21!#

1l2 (
s850

s21

Pl~r21,s8!Pl~r11,s212s8! ~3.2!

in the following way: The first update may create exactly one
new active barrier with probabilityl(12l) either to the left
or to the right of the origin~i.e., one step towards or away
from the chosen site of distancer ). In this case, the proper-
ties of the original avalanche of durations are related to the
properties of an avalanche of durations21 with regard to a
site of distancer21 or r11, respectively. Finally, the first
update may create two new active barriers with probability
l2 to the left and the right of the origin. Then, the properties
of the original avalanche of durations are related to the
properties of all combinations of two avalanches of com-
bined durations21. Both of these avalanches evolve in a
statistically independentmanner forM5`. Since only one
of these avalanches can be updated at each time step, their
combined duration has to add up tos21 for this process to
contribute to the avalanche of durations. For any such com-
bination, the probability to not affect the chosen site of dis-
tancer from the origin is given simply by the product of the
probabilities for the two ensuing avalanches to not affect a
chosen site of distancer21 or r11, respectively.

Before proceeding with the solution of Eq.~3.2!, we re-
view some limiting cases to obtain previously derived results
@17#. Considering the limitr5`, for s>2, Eq.~3.2! reduces
to

Pl~s!52l~12l!Pl~s21!1l2 (
s850

s21

Pl~s8!Pl~s212s8!.

~3.3!

This is the cascade equation for the lifetime distribution of
avalanches whose solution is Eq.~2.2! ~see Appendix A!.
Near the critical point,Dl5lc2l→01 , the lifetime distri-
bution obeys a scaling form

Pl~s!;s2tG~sDl1/s! ~t5 3
2 ,s5 1

2 !. ~3.4!

Similarly, we can rederive Eq.~2.3! for the spatial corre-
lations. Defining Nl(r )5(sPl(r ,s), Eq. ~3.2! yields
Nl(0)50, and forr>1

Nl~r !5~12l!21l~12l!@Nl~r21!1Nl~r11!#

1l2Nl~r21!Nl~r11!. ~3.5!

FIG. 5. Plot of a typicallc avalanche forM5`, starting at the
origin at times50, and ending at times5976. At each time step,
every site with at least one active barrier is markedL, and the
sequence of minimal sites is connected with a line showing jumps
of various sizes. Apparent also are the punctuated equilibria for
each site which extend over many sizes. The propagatorG(r ,s) of
the activity is the probability to have a minimum at siter at time
s, while F(r ,s) is the probability for an avalanche to end ats ~here:
5976) and to have reached a particular siter at any time during its
evolution.
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Nl(r ) is the probability for an avalanche of any temporal
extent not to reach a particular point of distancer before it
dies. Equation ~3.5! for l5lc51/2 is solved by
Nlc

(r )512 f r with f r given in Eq.~2.3!. Close to the criti-
cal point this quantity also obeys a scaling form

12Nl~r !;
1

r tR21H~rDln! ~tR53,n5 1
2 !. ~3.6!

The equation governing the envelope functionFl(r ,s) is
obtained by inserting Eq.~3.1! into Eq. ~3.2!. It is
Fl(0,s)[Pl(s), Fl(r ,0)[0, Fl(r>1,s51)50, and for
s>1, r>1,

Fl~r ,s11!5l~12l!@Fl~r21,s!1Fl~r11,s!#

1l2 (
s850

s

Pl~s2s8!@Fl~r21,s8!

1Fl~r11,s8!#

2l2 (
s850

s

Fl~r21,s8!Fl~r11,s2s8!.

~3.7!

Now we will focus on the spatiotemporal correlations at
the critical pointl5lc51/2. For sufficiently large values of
r ands we will show thatFl(r ,s)→0 for r→` sufficiently
fast such that we can neglect the nonlinear term in Eq.~3.7!.
We can take the continuum limit and obtain@24#

]F~r ,s!

]s
;
1

2
¹ r
2F~r ,s!1

1

2E0
s

V~s2s8!F~r ,s8!ds8,

~3.8!

a ‘‘Schrödinger’’ equation in imaginary time, forF(r ,s)
with a nonlocal memory kernelV(s)5P(s)22d(s), where
P(s)5Plc

(s) given in Eq.~2.2!, andd(s) is the usual Dirac
d function. Note that it is the statistical independence of the
avalanches forM→` that givesV(s) in terms of the prob-
ability distribution of avalanche sizes. The memory in the
system here is characterized solely in terms of this distribu-
tion.

This nonlocal potential with the integral kernelV(s) con-
tains all of the history dependence of the process. In its ab-
sence the system would have no memory and be purely dif-
fusive with a Gaussian tailF;e2r2/2s. In its presence the
probability to have reached a site at distancer at times gets
contributions from avalanches that reachedr at earlier times
s8,s. These contributions are weighted according to
P(s2s8) which has a power law tail. Avalanches contribut-
ing toF(r ,s) consist of subavalanches, one of which reaches
r in time s8 while the other’s combined duration iss2s8.
The subavalanche tree structure gives a hierarchy of time
scales. This changes the relaxation dynamics to be non-
Gaussian, and we find as our main result that

Flc
~r ,s!;~24/p!1/2s2 3/2S r 4s D 1/3e2 3/4 ~r4/s!1/3 ~r 4@s@1!.

~3.9!

It is immediately clear from the form of the solution that the
avalanche dimension for the subdiffusive spreading of activ-
ity ( r D;s) is D54. Diffusion is slowed down because the
activity has a tendency to revisit sites, and the system re-
members these previously visited sites. Considering
x5r D/s as the scaling variable, the variation of the exponent
is much slower with a ‘‘fat’’ tail (;x1/3) compared to a
Gaussian tail (;x with D52).

In Appendix C we derive the complete leading asymptotic
behavior given in Eq.~3.9!. Here we will just show how the
history dependence in the Schro¨dinger equation~3.8! gives
rise to the non-Gaussian tail in the exponential of Eq.~3.9!.

A. Calculation of the fat tail

Using a Laplace transformF̃(r ,y)5*0
`dse2ysF(r ,s) Eq.

~3.8! turns into an ordinary second-order differential equa-
tion in r ,

¹ r
2F̃~r ,y!;@2y2Ṽ~y!#F̃~r ,y!, ~3.10!

whereṼ(y) is the Laplace transform ofV(s). SinceF(r ,s)
is falling for larger , it is

F̃~r ,y!;C~y!exp@2rA2y2Ṽ~y!#, ~3.11!

and we assume thatC(y) is a sufficiently well-behaved func-
tion neary50.

The inverse Laplace transform yields a contour integral
with a contour extending just to the right (h.0) of the
imaginaryy axis

F~r ,s!;E
2 i`1h

i`1h dy

2p i
C~y!exp@ys2rA2y2Ṽ~y!#.

~3.12!

The limit of larges corresponds to small values ofy where
Ṽ(y);22Ay such thatA2y2Ṽ(y);A2y1/4. Note that the
contribution from the left-hand side of Eq.~3.8! does not
effect the leading order which merely consists of a balance
between the terms on the right-hand side. After rescaling
y→y/s it is

F~r ,s!;
C~0!

2p isECdyexpFy2A2S r

s1/4D y1/4G , ~3.13!

whereC is a small piece of contour that crosses the realy
axis from below just to the right ofy50. It emerges that
F(r ,s) is exponentially cut off whenr@s1/4@1, determining
that the avalanche dimension isD54. In that limit, we can
perform a steepest-descent analysis of the integral@25#. First,
we note that the expression in the exponent has a moving

saddle point aty05
1
4r
4/3s21/3. To fix the saddle point, we

substitutey5y0v to obtain

F~r ,s!;
C~0!y0
2p is E

C
dvexp@y0~v24v1/4!#, ~3.14!

where the contourC is deformed such that it crosses the real
axis on the saddle point atv051. To find the steepest-
descent path for the contour in the neighborhood of the
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saddle point, we setv;11e1 id with e,d!1. Thus in the

exponent, it isv24v1/4;(231 3
8e

22 3
8d

2)2i( 34ed), indicat-
ing that the steepest-descent path~which is always also a
constant-phase path! is given bye[0 in the neighborhood of
the saddle point. Thus, we substitutev511 id in that neigh-
borhood and obtain the non-Gaussian tail in Eq.~3.9!,

F~r ,s!;C8~r ,s!expF2
3

4 S r 4s D 1/3G ~r 4@s@1!,

~3.15!

whereC8(r ,s) only contains powers ofr ands. The function
C8(r ,s), as well as the behavior ofF(r ,s) for s@r 4@1, is
determined in Appendix C. In Appendix D we will also con-
sider the distribution for avalanches that are fully confined in
a box of sizer ~see Fig. 5! and show that the dominant
relaxation behavior is given by Eq.~3.15! as well.

B. Numerical comparison with the propagator

We are now in a position to attempt to compare these
results with numerical measurements of the actual propaga-
tor G(r ,s). Based on earlier numerical investigations@26#,
we assume thatG(r ,s) has the scaling form

G~r ,s!;r d21gS r 4s D ~r 4/s@1!. ~3.16!

At each updates we determine the locationr of the minimal
random number in a surviving avalanche that started at
s50,r50. We bin counts as a function of lns and
i5 log2(r

4/s) for avalanches of durations,108 ~see Fig. 6!.
We find that the counting rates in logarithmic bins rise lin-
early with r for each value ofi ; thusd51. In Fig. 7 we plot
the normalized data forG(r ,s) vs s for different values of
i for 104,s,53107. Note that all data ‘‘collapses’’ onto

plateaus whose mean value and standard deviation is given
by the crosses with error bars to the right of each curve.

We attempted to numerically determine the asymptotic
tail of the functiong for large values ofx5r 4/s by assuming
in accordance with Eq.~3.9! that

g~x!;e2Axa
, x@1. ~3.17!

From the sequence of plateau values in Fig. 7 forg(x) we
determine a sequence of extrapolants

ln@2 lng~x!#

lnx
;a1

lnA

lnx
, x@1. ~3.18!

In Fig. 8 we plot this sequence of extrapolants as a function
of 1/lnx and estimate thata50.3560.03, in reasonable
agreement with with the valuea51/3 from the exponential
falloff for F(r ,s). Thus the behavior ofG(r ,s) is consistent
with the non-Gaussian asymptotic behavior of the envelope
functionF(r ,s).

IV. SCALING RELATIONS

In the SOC state, spatial and temporal correlations are
interrelated. This interrelation is expressed via scaling rela-
tions. In a broad class of SOC models, including the evolu-
tion models, the knowledge of just two scaling coefficients,
such ast andD, is sufficient to determine any other known
coefficient of the SOC state, including the approach to the
attractor, through these scaling relations@2#. We have shown
in Sec. III that the activity in the SOC state spreads in a
subdiffusive mannerr;s1/D, whereD54 is the avalanche
dimension. In Ref.@17# we have numerically determined the
root-mean-square distance of the location of the activity at
time s and shown that it scales ass1/4. In Fig. 9 we show that
the number of sites covered by the activity also grows as

FIG. 6. Counting rates for the activity plotted as a function of
time s. Each curve is labeled in descending order byi5 d log2xe
wherex5r 4/s is the scaling variable@see Eq.~3.17!#. Data with
i.12 has been disregarded due to insufficient statistical accuracy.

FIG. 7. The normalized distribution of activityG(r ,s) derived
from Fig. 6. All data ‘‘collapses’’ onto plateaus with a mean value
for each plateau given by3 on the right, again labeled by
i5 d log2xe. The standard deviation for the data in each plateau is
indicated by error bars.
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s1/4. This verifies that rather than being multifractal there is
only one dimension for the avalanche.

The probability distribution oflc avalanche duration is a
power law with exponentt53/2, and we have shown that
the probability distribution of spatial extents of avalanches is
also a power law with critical exponenttR53. This verifies
the scaling relationtR215D(t21). It is easy to show that
the average size of an avalanche diverges with exponent
^s&;(Dl)2g with g51, and previously we derived that the
critical exponents describing the cutoff of avalanche sizes
below the critical point is 1/2. These results verify the scal-

ing relationg5(22t)/s. The result in Sec. III for the cutoff
in the correlation lengthn51/2 in Eq.~3.6! verifies the scal-
ing relationn51/(sD). Our analysis of the model in higher
than one dimension shows that all of these above mentioned
exponents are independent of dimension.

The punctuated equilibrium behavior, however, does de-
pend on dimension. Each site is visited many times in a long
lived avalanche. The intervals between subsequent returns to
a given site correspond to periods of stasis for a given spe-
cies. As shown in Fig. 1, the accumulated number of returns
to a given site forms a ‘‘Devil’s staircase’’; the plateaus in
the staircase are the periods of stasis for that species. The
punctuations, i.e., the times when the number of returns in-
creases, occupy a vanishingly small fraction of the time scale
on which the evolutionary activity proceeds. The distribution
of plateau sizes is the same as the distribution of first returns
of the activity to a given sitePFIRST(s). We found in dimen-
sions d<4 that PFIRST(s);s2t FIRST for large s with
tFIRST522d/D @2#. ForM→` in d51 dimension, the scal-
ing relations therefore predicttFIRST57/4. We have mea-
suredtFIRST51.7360.05.

Forward avalanches

The quantityPl(s) is the conditional probability to have
a forward avalanche of sizes given that the signal at the
starting point was equal tol. Such avalanches are defined by
looking at the first moment forward in time when the signal
lmin exceeds its current valuel. It is important to note that
this conditional forward probability distribution is exactly
equal to the ‘‘punctuating’’ avalanche distribution. Punctuat-
ing l avalanches are defined as the intervals separating sub-
sequent instances whenlmin(s)>l; see Fig. 10. For ex-
ample, the punctuatingl50 avalanches form a sequence

FIG. 8. Plot of the extrapolants from Eq.~3.18! for each
i5 d log2xe as function of 1/lnx. Asymptotically for 1/lnx→0, this
sequence approaches the value ofa. From the extrapolation of the
sequence tox→` ~indicated by the lines that extend the sequence
and its errors to the ordinate! we estimatea50.3560.03, in good
agreement witha51/3.

FIG. 9. Plot of the mean widthR(s) of the compact region of
covered sites for surviving avalanches at times for s,105. The
result of a simulation involving 108 avalanches is given byL, and
the solid line is given by 6.10(s1/421.0), obtained from an asymp-
totic fit of the data for larges.

FIG. 10. Plot of a part of the sequence of minimal random
numberslmin(s) chosen for an update at times in a lc avalanche
for M5`. The durations of a hierarchy ofl avalanches is indicated
by forward arrows, wherel5lmin(s). Longer avalanches with
larger values ofl contain many shorter avalanches which have to
finish before the longer avalanche can terminate. Note that an up-
date punctuates anyl avalanche withl<lmin(s).
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where all avalanches have sizes51. The probability distri-
bution for thel avalanches does not depend on the precise
value of the site that started thel avalanche~as long as it is
>l) because this value is erased from the system after the
first update. Thus the minimal numbers selected at different
time steps are distributed as

p~lmin>l!51/̂ s&l where ^s&l5(
s50

`

sPl~s!.

~4.1!

Substituting Eq. ~2.2! gives ^s&l51/(122l), and
p(lmin5l)52 for 0<l<1/2.

The distribution ofall forward avalanchesPf
all(s) is ob-

tained by integrating the conditional probability from Eq.
~2.2! with the proper weightp(lmin5l) for the starting
value of the avalanche@27,28,2#. This distribution measures
avalancheswhich begin at every time step s8 and end at the
first moment forward in times81s when lmin(s81s)
.lmin(s8). We find in agreement with numerical simula-
tions that

Pf
all~s!5E

0

1/2

p~lmin5l!Pl~s!dl5
A~s!

s
1

1

s~2s11!
~4.2!

with A(s) given in Eq.~2.2!. For larges this distribution is a
power law

Pf
all~s!;s2t f

all
where t f

all52. ~4.3!

This particular exponentt f
all turns out to be superuniversal

and equals 2 for a wide variety of extremal models@28,2#.

V. BACKWARD AVALANCHES AND ULTRAMETRICITY

Due to the irreversible nature of the process, it is interest-
ing to consider the properties of the system under time re-
versal which can be studied in terms of backward ava-
lanches. Now we look for the first momentback in time
when lmin(s82s).lmin(s8)5l @27,28,2#. The definitions
of forward and backward avalanches are illustrated in Figs.
10 and 11. These figures demonstrate the hierarchy in the
avalanche structure: all forward and backward avalanches
that start inside one big forward~backward! avalanche are
constrained to not go beyond the limits of the parental ava-
lanche and, therefore, can be considered to be its subava-
lanches. Each subavalanche in turn has its own subava-
lanches, and so on. One can look at the entire activity as one
great parental critical avalanche, which began in the distant
past. It contains subavalanches of all sizes.

We can determine the distributions forl backward ava-
lanchesPl

b(s) and all backward avalanchesPb
all(s) exactly.

Suppose we have a temporal sequencelmin(s8) which is an
ensemble ofN, l punctuating avalanches, whereN is a suf-
ficiently large number. The average number ofl punctuating
avalanches of sizes in such an ensemble is given by
N(s)5NPl(s). At the end of anyl avalanche of sizes,
precisely (s11) new random numbers have been introduced
into the system that were not there when the avalanche be-
gan. All these random numbers areuncorrelatedand uni-

formly distributed betweenl and 1 @2#.
To havelmin(s81s)5l we need the minimal number in

the system to lie betweenl andl1dl. This number can be
only in this set of new random numbers, since at the begin-
ning of thel avalanche every number in the system was by
definition larger than or equal tol. The probability that at
least one of these new numbers will be betweenl and
l1dl is given by (s11)dl/(12l). Increasing the param-
eter tol1dl, the numberN of avalanches will be changed
by dN52N(s11)dl/(12l). Of course the sum of the
temporal durations of these avalanches will remain constant.
This leads to the following differential equation for the av-
erage size of an avalanche

dln^s&l

dl
5

~s11!

12l
, ~5.1!

which is analogous to Eq.~16! in Ref. @2#, and also shows
that the avalanche size diverges with exponentg51.

The numberNl
b(s) of valid l backward avalanches of

size s in our ensemble of punctuating avalanches is
Nl
b(s)dl5NPl(s)(s11)dl/(12l). Therefore, the condi-

tional probability distribution ofl backward avalanches
obeys

Pl
b~s!5

c~s11!Pl~s!

~12l!
5

c

l~122l!

d@l2Pl~s!#

dl
.

~5.2!

The proportionality constantc is determined from the nor-
malization condition (s50

` Pl
b(s)51, so that c

5 (122l)/2.
The distribution of all backward avalanches measures

avalanches which begin at every time steps8, and end at the
first moment backward in time s82s, when
lmin(s82s).lmin(s8). We find

FIG. 11. Same sequencelmin(s) as in Fig. 10, where the dura-
tions of backwardl avalanches is indicated by backward arrows. A
similar hierarchical structure of subavalanches emerges, although
with a different distribution than for forwardl avalanches in reflec-
tion of the irreversibility of the update process.
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Pb
all~s!5E

0

1/2

p~lmin5l!Pl
b~s!dl

5
G~s11/2!

2sG~1/2!G~s11!
1

1

2s~2s11!
. ~5.3!

At large times this distribution is a power lawPb
all(s)

;s2tb
all

where tb
all53/2. Here we have explicitly demon-

strated that time reversal symmetry is broken. The forward
and backward avalanches have different probability distribu-
tions and different scaling limits at large times. Equation
~5.3! is in perfect agreement with numerical simulations.

Unless the backward avalanche has sizes51, two ex-
tremal values that are chosen at subsequent times must have
both been present when the first of them was chosen. These
two barrier values will have some ultrametric distance be-
tween them. This ultrametric distance must be less than or
equal to the backward avalanche size, because the extremal
value that terminates a backward avalanche must be an an-
cestor toall of the extremal values in that backward ava-
lanche. The probability to have an ultrametric distance larger
than s is bounded above byPb

all(s). We have numerically
measured the ultrametric distance between subsequent activ-
ity and find a power law. In fact, as shown in Fig. 12 it has
the same leading asymptotic behavior asPb

all within numeri-
cal accuracy.

We conclude by speculating about connections with other
phenomena related to glassy dynamics~see also Ref.@21#!.
The directed polymer in a random media~DPRM! @29#,
which could be a paradigm for glassy systems, exhibits an
ultrametric structure in the optimal paths as well as a non-
Gaussian tail for the probability distribution of these paths.
These paths are somewhat analogous to the activity pattern
in our model. However, unlike the DPRM, our model is in-
herently dynamical. Tang and Bak@30# found stretched ex-
ponential relaxation for the current in a sandpile model of

SOC which could indicate that glassy dynamics takes place
near a critical point. Recently Stein and Newman@31# have
put forward a picture of dynamics on a high dimensional
rugged fitness landscape based on an invasion percolation
~SOC! picture.

Finally, we note that our model may fit into the picture of
hierarchically constrained dynamics put forward by Palmer,
Stein, Abrahams, and Anderson@32#. We have an equation
of motion for the dynamics which takes place in terms of
avalanches spanning all time scales. These avalanches are
our hierarchically constrained degrees of freedom. Looking
at Fig. 10 one notices that everyl avalanche is composed of
subavalanches which are fully contained within it. Eachl
avalanche cannot terminate until its subavalanches finish, so
that the faster degrees of freedom successively constrain
slower ones and form a hierarchy.
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APPENDIX A: SOLUTION OF EQ. „3.3…

It is straightforward to solve Eq.~3.3! using a generating
function. Defining pl(x)5(s50

` xsPl(s) and applying the
initial conditions @see Eq. ~3.2!# Pl(0)50 and Pl(1)
5(12l)2, we find

pl~x!2~12l!252l~12l!xpl~x!1l2xpl~x!2,
~A1!

an ordinary quadratic equation for the generating function.
Its only acceptable solution is

pl~x!5
@12A124l~12l!x#2

4l2x
. ~A2!

The solution forPl(s) in Eq. ~2.2! is simply given by the
coefficients inx of the Taylor series ofpl(x).

The generating functionpl(x) has a square-root singular-
ity which determines the asymptotic behavior of its Taylor
coefficients, i.e.,Pl(s). We point out that this asymptotic
behavior is a robust feature with respect to changes in the
way the model is updated at each time step. For instance, if
we had not chosen to set the barrier with the current mini-
mum to unity but to replace it also with a new random num-
ber, we would have obtained a cubic equation forpl(x); the
solution of which would still be dominated by a square-root
singularity. Furthermore, an update including more than
nearest-neighbor sites would lead to even higher-order alge-
braic equations forpl(x), which are still dominated by the
same square-root singularity. It would be interesting to con-
sider changes in the updating rules that in fact would replace
the leading square-root singularity, and the physics that such
new rules indicate.

FIG. 12. Log-log plot of the distribution for the duration of
backward avalanches (1) and the distribution for the ultrametric
distances between subsequent minimal sites (3). Both functions
seem to coincide asymptotically for larges.
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APPENDIX B: CALCULATION OF EQ. „2.4…

Let r be a non-negative integer. LetN( i ,r ) be the prob-
ability that alc avalanche which starts at sitei will always
be completely contained inside a box of radiusr centered at
the origin i50. By definition,N( i ,0)[0 because in the ini-
tial state the avalanche already contains one barrier which
certainly will never be contained inside a box of vanishing
radius.

The properties of an avalanche starting ati can be related
to the properties of avalanches starting ati21 and i11 by
considering all possible states of the avalanche after the first
step. No new active barriers are created after the first step
with probability (12lc)

251/4 and the avalanche terminates
without ever spreading beyond the sitei . A single new active
barrier is created after one time step either to the left or the
right of i , each with a probability oflc(12lc)51/4, and
N( i ,r ) is related toN( i21,r ) or N( i11,r ), respectively.
Finally, with a probability oflc

251/4 two new active barri-
ers are created ati21 and ati11, and the avalanche starting
at i will never leave the box if neither avalanche ensuing
from i21 andi11 will ever leave the box. Thus, assuming
throughout thatr.1, it is for u i u,r21

N~ i ,r !5 1
4 1 1

4 @N~ i21,r !1N~ i11,r !#

1 1
4 N~ i21,r !N~ i11,r !. ~B1!

Clearly, N( i ,r )[0 for all u i u>r , leading to the boundary
condition for i5r21,

N~r21,r !5 1
4 1 1

4 N~r22,r !. ~B2!

SinceN( i ,r ) is symmetric in its first argument, we will only
consider non-negative values ofi and obtain another bound-
ary condition ati50 from Eq.~B1!

N~0,r !5 1
4 1 1

2 N~1,r !1 1
4 N~1,r !2. ~B3!

We can simplify Eq.~B1! by substituting

N~ i ,r !512 f ~ i ,r ! ~B4!

to obtain for 0, i,r21

D i
2f ~ i ,r !5 1

2 f ~ i21,r ! f ~ i11,r !, ~B5!

whereD i is a difference operator. Equation~B3! leads to a
boundary condition ati50,

D i f ~ i51,r !5 1
4 f ~1,r !2, ~B6!

while Eq. ~B2! gives another boundary condition for
i5r21,

D i f ~ i5r21,r !52 3
4 f ~r22,r !1 1

2 . ~B7!

To make further progress we assumer@1, which allows to
consider the continuum limit of Eq.~B5!. We setz5 i /r such
thatz is a continuous variable in the unit interval for anyr in

this limit. We also sety(z)5 f ( i ,r ), wherey is a function of
z that depends onr as a parameter. Thus we can rewrite Eq.
~B5! as

1

r 2
y9~z!5

1

2
y~z!2 ~B8!

to leading order in the limitr→`. For the boundary condi-
tions atz50 andz51 we find from Eqs.~B6!, ~B7!

1

r
y8~0!5

1

4
y~0!2,

1

r
y8~1!52

3

4
y~1!1

1

2
. ~B9!

We note that we can obtain an equation for any value ofl

1

r 2
y9~z!5S 1l 22D y~z!1ly~z!2 ~B10!

which reduces to Eq.~B8! for l5lc . It is easy to show that
the linear term dominates on the right-hand side for
l,lc , leading to avalanche distributions with an exponen-
tial cutoff for larger .

We can integrate Eq.~B8! using standard techniques for
autonomous ordinary differential equations@25#. We set
u(y)5yr8(z), use the chain rule to getyr9(z)5u8(y)u(y),
and integrate once to find

1

r
y8~z!56A~1/3!y~z!31C. ~B11!

Sincey(z) is a rising function ofz, we choose the positive
root. The integration constantC can be rewritten using the

boundary condition atz50 in Eq. ~B9! asC52 1
3 y(0)

3,
where we neglected terms of higher order iny(0) because
y(0) is expected to be small forr→`.

Integrating one more time we obtain

E
1

y~z!/y~0!
dz

Az321
5zrFy~0!

3 G1/2. ~B12!

We find at z51, using Eq.~B9!, that y(1)52/3, because
y8(1)/r!1. Thusy(1)/y(0)→`, and we obtain Eq.~2.4!

f ~0,r !;y~0!;
3

r 2 S E1` dz

Az321
D 2

5
1

3 FG~ 1
6 !G~ 1

2 !

G~ 2
3 !

G 2 1r 2
'
17.69

r 2
. ~B13!

Note that this result verifies our assumption thaty(0) is
small. Using dominate balance techniques@25# we can show
that this solution is in fact the only consistent solution.

APPENDIX C: LEADING ASYMPTOTIC BEHAVIOR
OF THE SPATIOTEMPORAL CORRELATIONS
WITH RESPECT TO A PARTICULAR SITE

The nonlinear integro-difference Eq.~3.7! can be solved
exactly in the continuum limit. Taking the continuum limit is
justified because we are ultimately interested in the behavior
of F(r ,s) for sufficiently large values ofr ands. In general,
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to obtain the asymptotic behavior of a difference equation
from the corresponding differential equation can be tricky
even in the linear case@25#. But comparison with our calcu-
lation in Appendix D, where the continuum limit poses no
problem, independently confirms our approach here.

With f (r ,x)5(s50
` xsFl(r ,s) andp(x)5(s50

` xsPl(s) as
generating functions, we obtain from Eq.~3.7!, using Eq.
~A2!,

D r
2f ~r ,x!5A~x! f ~r ,x!1B~x! f ~r21,x! f ~r11,x!,

f ~0,x!5p~x!, and f ~`,x!50, ~C1!

defining

A~x!5
122xl~12l!22xl2p~x!

xl~12l!1xl2p~x!
,

B~x!5
xl2

xl~12l!1xl2p~x!
. ~C2!

We can take the continuum limit of Eq.~C1! and get to
leading order for larger an ordinary second-order nonlinear
differential equation forf as a function ofr

f ~r !95Af~r !1Bf~r !2, f ~0!5p, f ~`!50, ~C3!

where we have suppressed dependence on the parameterx.
Using again the techniques for autonomous equations~see
Appendix B! and the fact thatf (`)50, Eq. ~C3! can be
solved exactly to give

f ~r !5pFcoshS 12AAr D1S 11
2Bp

3A D 1/2sinhS 12AAr D G
22

.

~C4!

Thus we obtain from Eq.~C4! a closed-form expression for
the envelope function of the spatiotemporal distribution of
avalanches

Fl~r ,s!;2 R dx

2p i
x2s21f ~r ,x!, ~C5!

where the contour encircles a small neighborhood of the ori-
gin in the complexx plane in the positive direction.

From now on, we only consider the critical case
l5lc51/2. The integrand in Eq.~C5! can be expanded for
large s in the neighborhood ofx51 by substituting
x512u/s. Then the integration foru follows a contour that
crosses the positive real axis from above near the origin in
the complex-u plane. With

p~x!;122S usD
1/2

12
u

s
,

A;2S usD
1/2

12
u

s
,

B5
1

2
1
1

2 S usD
1/2

, ~C6!

we find

F~r ,s!;E
C

du

2p is
euf S r ,12

u

sD , ~C7!

where an analysis of Eq.~C4! yields

f S r ,12
u

sD;5
12

r 2 F2S usD
1/2S r 26 11D1S usD

3/2 r 6

756
1 • • • G ~1!r 4!s!,

24S usD
1/2

expF2A2r S usD
1/4G ~s!r 4!.

~C8!

In the first case of Eq.~C8! we have neglected terms with integer powers inu which would vanish in the following integration.
For r 4@s, we evaluate the integral forF(r ,s) by steepest-descent analysis similar to Sec. III, but taking account also of the

nonexponential factor in the integrand. For 1!r 4!s, we use Hankel’s contour integral representation of theG function @33#

1

G~2n!
52E

C

du

2p i
euun ~C9!

to find

F~r ,s!;5
1

Ap
s23/2S 11

6

r 2
1

1

84

r 4

s
1 • • • D ~1!r 4!s!,

A24

p
s23/2S r 4s D 1/3expF2

3

4 S r 4s D 1/3G ~r 4@s@1!,

~C10!

where the second case is our main result for the non-Gaussian tail given in Eq.~3.9!.
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APPENDIX D: LEADING ASYMPTOTIC BEHAVIOR
OF THE SPATIOTEMPORAL CORRELATIONS

WITH RESPECT TO A BOX

In this appendix we calculate the distribution for the size
of a box in space and time such that al avalanche will be
fully contained in it. This notion, which easily generalizes to
higher dimensions, extends on the calculation in Sec. III and
Appendix C, where we only considered avalanches with re-
spect to a single site. While the calculation here~which is
similar to Appendix B! is somewhat more extensive, the re-
sults are virtually identical and justify our simplified ap-
proach in Sec. III.

Let P(r ,s,i ) be the probability for al avalanche, which
starts at times50 with a single active barrier on sitei , to
have no active barriers for the first time at times, and to not
have left a boxiP(2r ,r ). We merely consider avalanches
in the critical state and setl5lc51/2. By definition,
P(r50,s,i )[0 for all s>0. Furthermore,P(r ,s50,i )[0
for all r , because by definition no avalanche ends at time
s50. Ultimately, we want to find the distributionF(r ,s,0)
of avalanches of durations that start at the origini50 and
are completely contained in a box of radiusr . A generic
avalanche is plotted in Fig. 5; the smallest box it is fully
contained in is of sizer518 in this case. In correspondence
with Eq. ~3.1! it is

F~r ,s,i !5P~r5`,s,0!2P~r ,s,i !, ~D1!

whereP(r5`,s,0)5Pl(s) is given in Eq.~2.2!.
As before, the properties of an avalanche that originates at

s50 can be deduced from the properties of avalanches that
ensue after the first update. The original avalanche can either
terminate after the first update when the update does not
produce any new active barriers with probability
(12l)251/4, or it can generate new avalanches by creating
new active barriers. If the first update creates exactly one
new barrier with likelihoodl(12l)51/4 either to the left
or to the right of sitei , the properties of an original ava-
lanche of durations is related to the properties of an ava-
lanche of durations21 with regard to a site of distance
i21 or i11, respectively. If the first update creates two new
active barriers with probabilityl251/4 to the left and the
right of site i , two new avalanches ensue. Then, the proper-
ties of the original avalanche of durations is related to the
properties of all combinations of two avalanches of com-
bined durations21. For any such combination, the probabil-
ity to not leave the box when starting at sitei is given simply
by the product of the probabilities for the two ensuing ava-
lanches to not leave the box after starting at sitei21 or
i11, respectively. We thus obtain forr>1 and u i u,r that
P(r ,s51,i )51/4, and for alls>1 that

P~r ,s11,i !5
1

4
@P~r ,s,i21!1P~r ,s,i11!#

1
1

4 (
s850

s

P~r ,s8,i21!P~r ,s2s8,i11!.

~D2!

Since P(r ,s,i ) is symmetric in i , we restrict ourselves to
non-negative values ofi , leading to a boundary condition at
i50:

P~r ,s11,0!5
1

2
P~r ,s,1!1

1

4 (
s850

s

P~r ,s8,1!P~r ,s2s8,1!

~s>1,r>1!. ~D3!

SinceP(r ,s,i>r )[0, we obtain a second boundary condi-
tion at i5r21:

P~r ,s21,r21!5
1

4
P~r ,s,r22! ~s>1,r>2!. ~D4!

Using Eq.~D1!, and definingf (r ,x,i )5(s50
` xsF(r ,s,i ),

we obtain for 1< i<r22

D i
2f ~r ,x,i !5A~x! f ~r ,x,i !1B~x! f ~r ,x,i21! f ~r ,x,i11!,

~D5!

whereA(x) andB(x) are the same as in Eq.~C2!, supple-
mented by the boundary conditions

D i f ~r ,x,i51!5F12
x

4
2
x

4
p~x!G f ~r ,x,1!1

x

4
f ~r ,x,1!2,

D i f ~r ,x,i5r21!5S x421D f ~r ,x,r22!

2p~x!S 12
x

4D2
x

4
. ~D6!

As before in Appendix C, we expand the equations in the
limit x→1 to analyze the avalanche distribution for large
timess. Then Eq.~D5! simplifies for 1< i<r22 to

D i
2f ~r ,x,i !;2A12x f~r ,x,i !1 1

2 f ~r ,x,i21! f ~r ,x,i11!
~D7!

with the boundary conditions

D i f ~r ,x,i51!;A12x f~r ,x,1!1 1
4 f ~r ,x,1!2,

D i f ~r ,x,i5r21!;2 3
4 f ~r ,x,r22!1 1

2 . ~D8!

For sufficiently larger , we can take the continuum limit of
these equations wheref (r ,x,i )→y(z)/r 2 with z5 i /r as a
continuous variable in the unit interval. Equations~D7! then
approach

y9~z!52r 2A12xy~z!1 1
2 y~z!2,

y8~0!5rA12xy~0!,

y~1!5 2
3 r

2. ~D9!

We can obtain a first integral of Eq.~D9! using again the
technique for autonomous equations:

y8~z!56H 13 @y~z!32y~0!3#12r 2~12x!1/2

3@y~z!22y~0!2#J 1/2, ~D10!
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assuming thaty8(0)→0 for r→` sufficiently fast. Since
y(z) is a rising function ofz, we have to chose the positive
root. Integrating again, and usingy(1), weobtain

E
1

2r2/3y~0! dz

Az3211a~z221!
;Fy~0!

3 G1/2z
with a5

6r 2A12x

y~0!
. ~D11!

For y(0)!r 2A12x, i.e.,a@1, we get

Fy~0!

3 G1/2; 1

Aa
lnF32a G , ~D12!

which yields

f ~r ,x,0!;
y~0!

r 2
;3A12xexp~2A2r ~12x!1/4!

@1!r ~12x!1/4#, ~D13!

and by steepest-descent analysis as before

F~r ,s,0!;C~r ,s!expF2
3

4 S r 4s D 1/3G , ~1!s!r 4!

~D14!

confirming the non-Gaussian tail found in Eq.~3.9!. A simi-
lar consideration of the integral in Eq.~D11! would deter-
mine the behavior forr 2@y(0)@r 2A12x, i.e.,a!1.
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